

Semi-arid Savanna rangeland degradation and management: a landscape scale model

Klaus Kellner, Kerstin Wiegand, Sebastian Hanss and Theunis Morgenthal

School of Environmental Sciences and Development North-West University, South Africa

8 April 2011 : IRC 2011 (Argentina)

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

Introduction

- Extensive grazing by *livestock and/or game* is the most common and widespread land-use form in arid and semiarid savanna rangelands in Southern Africa
- Grazing causes changes in the vegetation structure and composition
- Land degradation processes include woody encroachment, loss in vegetation cover and soil erosion
- Most work is concentrated around short-term responses to the changes occurring at community (e.g. cover, richness, floristic composition) or individual-levels (e.g. individual growth-rate)

- Appropriate assessment of sustainable grazing management in rangelands is difficult, mainly due to 4 reasons:
- a) mismatch between time scales for observation and time scales of vegetation change;
- b) differences in the relevant spatial scales;
- c) complex non-equilibrium rangeland dynamics; and
- d) potential conflicts between resource conservation and production.

STROOM CAMPUS

- Use data from individual plant dynamics on micro-scale scale and up-scale it to landscape and regional scales
- Understand how different management measures
 - lead to overall recovery or degradation of the vegetation condition at the landscape scale, and
 - affect the condition of the animal herds

Plant (micro-scale)

Landscape (macro-scale)

- Fenced and not fenced plots
- Proportion of rainfall and biomass production
- Effect of grazing on vegetation dynamics
- Use as benchmark sites for the model

Study area

- Molopo Nature
 Reserve at
 Botswana
 border
- Surrounding commercial and communal farmland
 Only deep sandy soils
 Uniform rainfall zone (approx.

300mm p.a.)

Study sites

Study sites

Landsat: 1984 – Molopo NR and surrounding areas

Landsat: 2005 – Molopo NR and surrounding areas

Landsat image : 1984 - Vegetation

Landsat image : 2005 - Vegetation

Model parameterization

- Ground-based data with a hierarchy of three sets of variables described by the *environment, vegetation and management*
- Data will be compared to classified LANDSAT 4 and 5, SPOT 5 images and NDVI data derived from NOAA (AVHRR), and MODIS, covering different temporal and spatial scales from 1984 till 2007
- Spatio-temporal dynamics of the vegetation due to impacts of
 - climatic conditions (temperature and precipitation),
 - soil moisture,
 - management (fire, wood removal, grazing/browsing),
 - demographic and phenological aspects of dominant plant types (unpalatable, palatable perennial and annual grasses and woody plants).

RTH-WEST UNIVERSITY INIBESITI YA BOKONE-BOPHIRIMA KORDWES-UNIVERSITEIT DTCHEFSTROOM CAMPUS

Spatial Extent

- Resolution
 - Input: 30m x 30m (Landsat pixel sizes)
 - Output: 90m x 90m
- Dimension
 - Approx. 512 x 512 cells (~ 25,000 ha)

Temporal Extent

- Resolution Monthly time steps
- Daily rainfall
- Management annual time steps
- Dimension usually 20 25 years

Modeling Approach

- Rule-based model
 - No complex differential equations
- Driven by sub-models
 - Like growth, grazing, fire ...
- Interaction of sub-model dynamics will lead to emergent effects in overall dynamics

Modeling Approach

- Cellular automaton model grid based
- Spatial explicit approach

Spatial Transition Rules

- If cell is dominated by an other vegetation type
- Considering annual or longer time step

Cellular Layers

Vegetation transition

- Changes cause degradation or recreation.
- Transition can either be a "temporal" (monthly) or a "spatial" (annual) procedure depending on the rules and requirements (environment) set for each vegetation type in the model that will lead to the "switching-on" (establishment) or "switching-off" (non-survival) of the vegetation type.

Transition: Example over different time steps

Outputs

- Improve the understanding and make predictions of possible vegetation dynamic changes (e.g. degradation, recovery, bush encroachment) due to environmental, climatic and management impacts from 30 up to 200 years.
- Apply sustainable management practices in the semiarid Savanna over the long-term.

Actions View Help

im	age S	lider	Rev	lew all	previo	usly sin	vulated	i month	15.																									08
	£		1.1		2.0	1.1				100	7.8	/X.	0.	181	181	181	181	585		1.81	585	180	- 200	30	X	30	(8)	18.1	383			10	35	10.5
15			1.4	-64	1.4	1.4				11	- 12	×	S.	1.0			1.8.		11		1	Y.	- X	×	×.	.4.	.4.	.4.	.4	10	P.(100	

Project Partners and Funders

- Farmers of Molopo
- Hennie van den Berg
- Sebastian Hanß
- Franci Jordaan
- Klaus Kellner

- Ernest Mokua
- Theunis Morgenthal
- André van Rooyen
- Kerstin Wiegand
- Thorsten Wiegand

Eastern Cape Agric

Thank you

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

Temporal Transition Rules

• ON and OFF switches for <u>annual grass</u>

Event	Rules					
Establishment ("on switch")	Germination:	Soilmoisture mini- mum 30%				
	Survival for one month:	Soilmoisture for at least 20 days				
	Assumption:	Seeds are ev- erywhere freely available				
Non-survival ("off switch")	Soilmoisture less than 10%	for more than ten days				
	or	"cold" fire				
	or	"hot" fire				
	or	end of growing sea- son				

Implementation Temporal Transition

ON and OFF switches for perennial plants

Event	Rules	
Establishment ("on switch")	Germination:	Soilmoisture mini- mum 50%
		Availability of
		space
		Availability of
		seeds
	Survival for one month:	Soilmoisture for at
		least 30 days
Non-survival ("off switch")		"hot" fire

Implementation Spatial Transition

Possible assumptions

Five or more neigh. cells\Biomass	Low	Medium	High
Bare Ground	В	B/UP	UP
Palatable Perennial	\mathbf{PP}	PP/UP	PP (?)
Unpalatable Perennial	UP	UP	UP
Woody	W	W/UP	UP
Else	UP	UP	UP

Vegetation Types

Vegetation type	Representative species	Precipitation memory index	Palatibility index
Bare ground			
Annual grass	Schmidtia kalihariensis	Low	Low, medium when dry
Perennial grass, palatable	Schmidtia pappophoroides	High	High
Perennial grass, non-palatable	Aristida stipitata	High	Low
Small woody	Acacia mellifera		Low ?
Woody	Acacia mellifera		Low ?