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a b s t r a c t

An algorithm to predict the NDVI (Normalized Difference Vegetation Index) distribution over Mongolia,
which is based on a stepwise multiple linear regression analysis, has been developed using global
precipitation data obtained from satellites and global surface air temperature data obtained from the
reanalysis data during the period 1998–2005. This algorithm can predict the NDVI value up to 1–3 months in
advance for a grid with a spatial resolution of 0.25� � 0.25�.
In order to validate the algorithm, the NDVI distribution was predicted for the period from May to
November 2006 using 1 to 3-month prediction algorithms. The distributions of the predicted normalized
anomalies agreed well with those of the observed normalized anomalies. It was found that these
algorithms were effective for arid and semi-arid regions, despite its low accuracy for August and regions
with high vegetation activity.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Mongolia is located in transition zone for vegetation, where
it ranges from taiga forest in the north to desert in the south,
corresponding to a decrease of annual precipitation amount. As
shown in Fig. 1, the rangelands in Mongolia occupying 97% of the
country are classified into five subtypes: a high mountainous region
(4.5%), a forest steppe (23%), a steppe (28%), a desert steppe (28%),
and a desert (16%) (Bolortsetseg et al., 2000). These rangelands are
the main source of forage for nomadic livestock. Poor biomass
production due to the drought in summer is the main cause of the
large-scale loss of livestock in winter (the so-called dzud) (Mor-
inaga et al., 2004). The seasonal prediction of biomass production
would be of a great benefit to the Mongolian society since the
productivity of grass in the rangeland intensively influences the
lives of its people.

The relationship between meteorological parameters and NDVI
(Normalized Difference Vegetation Index), which is a proxy for the
biomass production, in arid region has been investigated by several
researchers. Some studies have elucidated that a positive lag
correlation exists between the precipitation anomaly in the ante-
cedent month and the NDVI anomaly for the Mongolian grassland
(Schultz and Halpert, 1995; Miyazaki et al., 2004; Iwasaki, 2006a,b;
All rights reserved.
Shinoda et al., 2007). Iwasaki (2006a) demonstrated that the
distribution of rainfall amount observed by weather radar corre-
sponded well to the distribution of NDVI 1–2 months later over the
arid region of Mongolia. Iwasaki (2006b) has shown that winter
temperature is also correlated with the NDVI value in summer at
several meteorological stations. His study indicated that the NDVI
value in the developing stage and matured stage can be expressed
as a linear function of the precipitation amount and air temperature
at several meteorological stations using multiple linear regression
equations. However, it will be useful if the predicted NDVI distri-
bution over different types of regions, even the regions far away
from the meteorological stations, is provided. In order to predict
the NDVI distribution, instead of surface observation data, the use
of global precipitation data obtained from satellites and the global
surface air temperature obtained from the reanalysis data might be
effective. The purpose of this study is to examine the possibility of
NDVI prediction for the entire Mongolian grassland using the
precipitation data from the satellites and the temperature from the
reanalysis data.
2. Data

The algorithm to predict the NDVI distribution is based on
a multiple linear regression analysis using the data from SPOT
NDVI and GSMaP (Global Satellite Mapping of Precipitation) and
the surface air temperature obtained from the JAR-25 (Japanese
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Fig. 1. Distribution of the maximum NDVI (NDVI_max) for the period 1998–2005 and the location of meteorological stations and vegetation type.
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25-year reanalysis)/JCDAS (JMA Climate Data Assimilation System)
reanalysis data for the period 1998–2005. The validation of the
algorithm for NDVI prediction employs NDVI, GSMaP precipitation,
and JCDAS temperature in 2006.

2.1. SPOT NDVI

The SPOT/VEGETATION data compiled every 10 days with a
spatial resolution of 1 km are used as dependent variables for the
multiple linear regression equations and validation data of the
algorithm. The NDVI data are generally found to be well correlated
to a fraction of photosynthetically active radiation absorbed by
green vegetation and is a good indicator of the biomass production
(e.g., Tucker, 1979). The NDVI value is used as a proxy for the
biomass production. High-frequency noises due to clouds and
signal noises in the 10-day composite NDVI data are removed
using the BISE (Best Index Slope Extraction) method (Viovy et al.,
1992). Since the small NDVI values can produce large errors
in regions where the mean NDVI values are close to zero, only the
regions with NDVI values of more than 0.1 are used in the
calculation.

The SPOT NDVI data are compiled every month with a spatial
resolution of 0.25� � 0.25� to match the spatial resolution of the
GSMaP precipitation data.

2.2. GSMaP precipitation data

The GSMaP_MWR product (Ver. 4.8.4) is used to estimate
the global precipitation amount with a spatial resolution of
0.25� � 0.25� by the application of the retrieval algorithm for
brightness temperatures (Tbs) from satellite-borne microwave
radiometers. The basic aim of the algorithm is to find the optimal
precipitation amount for which the Tbs calculated by the radiative
transfer model fits perfectly with the observed Tbs (Kubota et al.,
2007). The algorithm has been improved based on the classification
in terms of rain or no rain over the land (Seto et al., 2005), and the
scattering algorithm has been improved using the 85- and 37-GHz
polarization-corrected temperatures. The estimation of precipita-
tion amount over the land is based on the scattering algorithm that
employs the emission from liquid water and the scattering due to
ice at 85 GHz.

The monthly precipitation data are used as independent
variables for the multiple linear regression equations and vali-
dation data of the algorithm. Since the precipitation amount is
one of limiting factors for NDVI value over the Mongolian grass-
land, the accuracy of NDVI prediction depends on the accuracy of
GSMaP precipitation data. Fig. 2 shows the scatter diagram
between the monthly GSMaP precipitation data and the monthly
raingauge precipitation data obtained at the 97 meteorological
stations shown in Fig. 1. The correlation coefficient and bias are
0.61 and þ3.2 mm, respectively. The accuracy of the GSMaP
precipitation data in an arid region is not good since the GSMaP
algorithm has been developed for precipitation over the tropics
and subtropics. It may cause a decrease in the accuracy of NDVI
prediction.

2.3. Surface air temperature obtained from JRA-25 and JCDAS

The JRA-25 data are reanalysis data provided by JMA (Japan
Meteorological Agency) and Central Research Institute of Electric
Power Industry; the data was obtained during the period 1979–
2004. JCDAS takes over the same system as JRA-25 and the data
assimilation cycle, and are available from 2005 up to the present
(Onogi et al., 2007). The surface air temperature at 2 m AGL
obtained from the two types of reanalysis data is compiled every
month with a spatial resolution of 0.25� � 0.25�, and its corre-
lation coefficient with the data from the observation exceeds
0.98. The monthly data are used as the independent variables for
the multiple linear regression equations and validation data of
the algorithm.
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Fig. 3. Flowchart for NDVI prediction algorithm.
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Fig. 2. Scatter diagram between monthly GSMaP precipitation data and raingauge
precipitation data at the meteorological stations shown in Fig.1 for the period 1998–2003.
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3. Algorithm to predict NDVI distribution

3.1. Determination of multiple linear regression equations

The algorithm to predict the NDVI distribution is based on
a multiple linear regression analysis using a stepwise method. The
analysis region including the Mongolian grassland is divided into
6912 (¼144� 48) grids with a spatial resolution of 0.25� � 0.25�.
The NDVI value at each grid is expressed as a function of the
precipitation amount and surface air temperature. For example, the
multiple linear regression equations for 1-month prediction of
August 2006 are determined by the stepwise method, using the
NDVI value for August during the period 1998–2005 as dependent
variables, and the GSMaP precipitation data and surface air
temperature from November to July during the period 1998–2005
as independent variables (Fig. 3a).

In order to predict the NDVI value for one month ahead, the
multiple linear regression equations are calculated using the inde-
pendent variables obtained one month before the required period.
The regression equations at the 95% significant level were adopted
for this algorithm (the adjusted multiple correlation> about 0.7).
Equation (1) is an example of the regression equation for a certain
grid (i¼ 21, j¼ 7), and NDVI for August can be predicted using
precipitation in July and temperature in May.

NDVI Aug ¼ 0:04� Prec Junþ 0:002� Temp Marþ 1:01 (1)

Since the regression equations were determined by the stepwise
method, precipitation terms and temperature terms with lower
contribution or with high multiple collinearity were removed.

The multiple linear regression equations for 2 and 3-month
predictions are also calculated by the same method.

3.2. Prediction of NDVI distribution

The NDVI distribution is predicted using the multiple linear
regression equations and the data of precipitation and surface air
temperature (Fig. 3b). For example, the NDVI values for August
2006 for a month ahead are calculated by substituting the GSMaP
precipitation data and surface air temperature from November
2005 to July 2006 for the multiple linear regression equations for
1-month prediction of August. The NDVI distribution is obtained by
calculating the NDVI values for all grids. The NDVI values for August
2006 for 2 and 3 months ahead are also calculated using multiple
linear regression equations for 2 and 3-month predictions of
August by the same method as 1-month prediction.

Occasionally, NDVI values that are significantly large or small are
also predicted. If the predicted NDVI value is more (less) than the
maximum (minimum) NDVI value for the period 1998–2005, the
maximum (minimum) NDVI value is adopted as the predicted
value. Except for this empirical constraint, all the predicted values
are simply calculated by the process shown in Fig. 3b.

4. Results of NDVI prediction

The NDVI prediction experiment from May to November in
2006 over Mongolia was carried out using the multiple linear
regression equations determined from the data obtained during
the period 1998–2005 so as to validate the 1 to 3-month predic-
tion algorithms. The distribution of observed and predicted NDVI
for 1-month prediction is shown in Fig. 4a. The gray region in
Fig. 4 indicates the grid in which a significant regression equation
is not determined, and Fig. 5 shows the time series of the number
of the valid grids for three cases. The number of the valid grids
increases with an increase in time. As for 1-month prediction the
significant regression equation is determined for 6032 grids
(about 87%), however, the valid grids for 2 and 3-month predic-
tions are lower in comparison with 1-month prediction, especially
in May and June.
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Fig. 4. Results of NDVI prediction from May to November 2006. (a) The observed and predicted NDVI distributions (top panels) and the observed and predicted normalized
anomalies (bottom panels) for 1-month prediction. (b) The observed and predicted normalized anomalies for 2-month prediction. (c) The observed and predicted normalized
anomalies for 3-month prediction. The gray region indicates the grid where a significant regression equation is not determined.
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The difference between the NDVI values of the south and north
Mongolia associated with the transition zone of vegetation and the
seasonal development of the NDVI distribution are well predicted
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Fig. 5. Time series of the number of grids where significant multiple linear regression
equations were obtained for 1 to 3-month predictions. Total number of grids for
analysis region is 6912.
in Fig. 4a. Fig. 6a shows the relationship between observed NDVI
and predicted NDVI for all grids from May to November, 2006. The
correlation coefficient between the observed and predicted NDVI
values for 1-month prediction is very high, that is, 0.97. Since the
correlation coefficients for 2 and 3-month predictions are also 0.97
(Table 1), there is no significant difference in the accuracy of three
prediction periods.

The accuracy of NDVI prediction should be evaluated using the
NDVI anomaly. The bottom panels of Fig. 4a–c show the distribution
of the observed and predicted anomalies, which are normalized by
the monthly NDVI value averaged over 1998–2005. In spite of
considerable difference in the number of valid grids (Fig. 5), qual-
itative features are common to the results of three prediction
periods. That is, the positive anomalies around the southern parts
of the analysis region from May to November and the predominant
positive anomaly over entire Mongolia in November are well pre-
dicted. The negative anomalies in the eastern part of Mongolia from
May to September are also well reproduced. On the other hand, the
predicted anomaly is not consistent with the observed anomaly in



Fig. 6. Scatter diagram between the (a) observed and predicted NDVI and (b) observed and predicted normalized anomalies of NDVI.
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the northern part of Mongolia from July to September, where the
NDVI value is relatively high.

Fig. 6b shows the relationship between observed NDVI
anomaly and predicted NDVI anomaly for all grids from May to
November, 2006. For all the prediction region and months, the
correlation coefficient between the observed and predicted
normalized anomalies is found to be 0.66 for 1-month prediction,
which is a significantly high value. The correlation coefficients for
2 and 3-month predictions are also high (Table 1), which means
that the NDVI values can be predicted up to a few months in
advance.

The accuracy depends on the climatological NDVI value. For
simplicity, the analysis regions are classified into two regions
using the maximum NDVI value for the period 1998–2005
(NDVI_max); the low-NDVI region where NDVI_max is less than
0.4 and the high-NDVI region where NDVI_max exceeds 0.4. As
shown in Fig. 1, the low-NDVI region almost corresponds to the
vegetation zone of a desert and a desert steppe, and the high-NDVI
region almost corresponds to the vegetation zone of a forest
steppe and the taiga forest. The vegetation zone of a steppe
belongs to both these regions. Fig. 7 shows time series of the
correlation coefficients between observed NDVI and the predicted
NDVI using 1-month prediction for the high- and low-NDVI
region. It is found that this NDVI prediction algorithm is very
effective for the low-NDVI regions of the arid and semi-arid
regions. This feature is also recognized in the results obtained by
2 and 3-month predictions (not shown), and it is consistent with
results obtained by Iwasaki (2006b).

The accuracy also depends on the season. The correlation coef-
ficients in spring and autumn are high; however, it is extremely low
in August (Fig. 7). A possible cause for the low correlation in August
is that the NDVI value in the matured stage (almost August) has
a negative correlation with the air temperature in the matured
stage (Iwasaki, 2006b). That is, the influence of summer tempera-
ture on the NDVI value does not have a large time lag. Since this
NDVI prediction is based on the lag correlation, the NDVI value in
August cannot be predicted with good accuracy. The poor biomass
Table 1
Correlation coefficients between the observed value and the predicted value for 1 to
3-month predictions.

1-month 2-month 3-month

NDVI value 0.97 0.97 0.97
Normalized NDVI anomaly 0.66 0.71 0.73
production due to summer drought is one of main causes for the
large-scale loss of livestock in winter, so that, the low accuracy in
August is a serious drawback and should be improved.

5. Discussion

5.1. Anomaly of NDVI in November

As shown in Fig. 4, the predicted normalized anomalies agree
well with those of the observed normalized anomalies in
November. It is hard to regard the NDVI values as the biomass
production of green vegetation because monthly mean air
temperature in November is less than �10 �C even in the southern
part of Mongolia. What the anomaly of NDVI in November means
will be discussed.

Since the difference of the reflectance in red and near
infrared, which is used for calculating NDVI, is generally greater
for plant litter than soils, typical NDVI values are also larger for
litter (0.14–0.45) than soils (0.08–0.16) (McMurtrey et al., 1993).
However, it is difficult to reliably distinguish plant litter from
soils by using NDVI values, because litter may be brighter or
darker than a particular soil and the reflectance spectra of soils
depend on moisture conditions (Nagler et al., 2000).

Nagler et al. (2003) showed that as the coverage of plant litter
increased on a specific soil with a constant reflectance, the differ-
ence of the reflectance in red and near infrared also increased; that
is, it leads to the increase in the NDVI value even for the dead
biomass. Since the interannual variation of the soil reflectance
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Fig. 7. Time series of correlation coefficient between the predicted and observed
normalized anomalies for the entire analysis region (solid line), low-NDVI region (thin
solid line), and high-NDVI region (dotted line).
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spectra for each grid in November would be negligible under the
low temperature condition, the amount/coverage of grass litter can
contribute to the variation of NDVI anomaly in winter. The increase
in the amount/coverage of grass litter over Mongolian grassland in
November, 2006 is thought to be observed as the positive anomaly
of NDVI, and this feature could be reproduced using the NDVI
prediction algorithm.

5.2. Accuracy of GSMaP precipitation

According to the results of many studies, precipitation is
a limiting factor for the vegetation activity over the Mongolian
grassland. Iwasaki (2006b) has studied the effect of precipitation
amount and air temperature on NDVI for the period 1998–2003,
and shows that number of the meteorological stations which have
significant lag correlations between precipitation and NDVI value is
a few times larger than number of the meteorological stations
which have significant lag correlations between air temperature
and NDVI value.

A similar analysis has been carried out using the GSMaP precip-
itation data for the period 1998–2005. Fig. 8 shows the time series of
the number of the grids with a high lag correlation with the
precipitation amount and temperature. It is found that temperature
is a limiting factor for NDVI in the analysis using the GSMaP
precipitation data. This feature is contradictory to the results
obtained by Iwasaki (2006b); this suggests strongly that the GSMaP
precipitation data is not sufficiently accurate.

The low accuracy of the GSMaP precipitation data, as shown in
Fig. 2, will decrease the accuracy of the NDVI prediction. However,
the GSMaP project was started in November 2004, and the GSMaP
algorithm has been developed for precipitation over the tropics and
subtropics. It is expected that GSMaP precipitation algorithm for
arid regions will be improved in the near future through the GPM
(Global Precipitation Measurement) project, and it would lead to
a high accuracy in the NDVI prediction.

6. Summary

An algorithm to predict the NDVI distribution up to 1–3 months
in advance over Mongolia, which is based on multiple linear
regression analysis using the stepwise method, has been devel-
oped. The analysis region is divided to 6912 grids with a spatial
resolution of 0.25� � 0.25�. A multiple linear regression equation
for each and every grid was determined using the SPOT NDVI data
for the period 1998–2005, which were used as dependent variables,
and the GSMaP precipitation data and the surface air temperature
obtained from the reanalysis data for the period 1998–2005, which
were used as independent variables.

The distribution of the monthly mean NDVI from May to
November 2006 was predicted up to 1–3 months in advance in
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Fig. 8. Time series of the number of grids with a high lag correlation with precipitation
data and temperature.
order to validate the prediction algorithm. The distribution of
the predicted normalized anomalies agreed well with that of the
observed normalized anomalies. A comparison between the
observed and predicted normalized anomalies for each and every
grid showed a correlation coefficient of 0.66, 0.71 and 0.73 for 1, 2
and 3-month predictions, respectively. The accuracy depended on
the season and the climatological NDVI value; the correlation
coefficients were low in August and for areas with a high-NDVI
value. It was found that the algorithm was effective for arid and
semi-arid regions since the correlation coefficients for low-NDVI
regions were significantly high.

Because this algorithm uses the global data set of NDVI,
precipitation data, and air temperature, the technique can be easily
applied for any arid and semi-arid regions.
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