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Abstract We assessed presence/absence prediction of plant species and communities 

in a southern Mongolian mountain range from geospatial data using a randomized 

sampling approach. One hundred randomized vegetation samples (3x3 m) were 

collected within the 2x2 km summit region of the Dund Saykhan range, which forms 

part of the core zone of the Gobi Gurvan Saykhan National Park in arid southern 

Mongolia. Using logistic regression, habitat preference models for all abundant species 

(n=52) and communities (n=5) were constructed; predictors were derived from 

Landsat 5 imagery and a digital elevation model. Nagelkerkes r2 was used for an 

initial data mining, and all significant models were validated by splitting the data and 

using one half for accuracy assessment based on the AUC (Area Under the receiver 

operating characteristic Curve)-values. Significant models could be built for half of 
the species. Altitude proved to be the most important predictor followed by variables 

derived from Landsat data. The clear altitudinal distribution patterns most definitely 

reflect precipitation; overall biodiversity in this arid environment is widely controlled 

by moisture availability. The chosen approach may prove valuable for applied studies 

wherever spatial data on species distributions are required for conservation efforts. 
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212 H. von Wehrden et al. 

Plant nomenclature Grubov (2001), Gubanov (1996) 

Abbreviations 

AIC Akaike information criterion 
AUC area under the receiver operating characteristic curve 

GAM generalized additive model 

GIS geographical information system 

GPS global positioning system 

NDVI normalized difference vegetation index 

PCA principal components analysis 

SRTM shuttle radar topography mission 

TC Tasseled Cap 
TNDVI transformed normalized difference vegetation index 

VEGIN vegetation index (channel 4 - channel 3) 

Introduction 

Over the last few decades, vegetation science has developed from being a widely 

descriptive discipline into a more formalized science that employs a wide variety of 
statistical approaches (Mucina 1997; Ewald 2003), and modelling plant species and 

plant community distribution has become a standard application in the field (Guisan 
and Thuiller 2005; Moisen et al. 2006). Despite recent advances in the use of 

presence-only models (Pearce and Boyce 2006), presence/absence scaled datasets 

have proven to be more robust, and thus preferable (Brotons et al. 2004). Logistic 

regression models encompass this data structure (Hosmer and Lemeshow 2000) and 

have been found to be superior to ordination approaches (Guisan et al. 1999), as well 

as being comparable to GAMs within a given spatial scale (Thuiller et al. 2003). 
Moreover, logistic regressions offer simple and inter-comparable parametric models 

(Peppler-Lisbach and Schroder 2004). Assessment of model performance is one 

precondition (Fielding and Bell 1997; Peppler-Lisbach and Schroder 2004), as well 
as a randomized sampling design (Crawley 2005) and a minimum abundance of the 

modelled organism. Consequently, real-world applications often suffer from logistic 
constraints and are typically restricted to abundant species only. Traditional 

deliberate sampling during phytosociological surveys, for example, represents an 

alternative, albeit one that may incorporate bias due to the subjectivity of its plot 
selection approach (Chytry 2001). 

As such, we chose a randomized design to sample vegetation in a core zone of the 

Gobi Gurvan Saykhan National Park, which hosts some of the most species-rich 
communities in southern Mongolia (Jager 2005; Miehe et al. 2007). Most available 
information on plant habitat preference and distributions within this area is on a 
coarse scale, for which the country has been divided into 16 regions (Gubanov 1996; 
Grubov 2001), and more detailed information are needed for both applied nature 
conservation and research (Balmford and Gaston 1999). Several recent studies have 

dealt with plant communities of Central Asian drylands (e.g., Hilbig 1995; 
Kurschner 2004; Wesche et al. 2005; von Wehrden et al. 2006), but none has 

applied logistic regression. Studies, however, are available from Europe (e.g., van de 

Rijt et al. 1996; Pausas 1997; Zimmermann and Kienast 1999; Heegaard 2002; 

Springer 

This content downloaded from 103.9.90.227 on Thu, 27 Mar 2014 07:11:19 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Predictive mapping of plant species in Mongolia 213 

Bjelland 2003; Rydgren et al. 2003; Peppler-Lisbach and Schroder 2004) or North 
America (e.g., Lenihan 1993; Brown 1994; Epstein et al. 1996; Bergeron et al. 1997; 

Shirakura et al. 2006), which have used the logistic regression modelling approach 

on plant communities or abundant plant species. 

GIS layers and remote sensing imagery are commonly used as predictors in 

vegetation analysis and modelling (Goodchild 1994; Dirnbock et al. 2003). 
However, few studies have applied such predictors in plant species habitat 

preference analysis and distribution models, and applications from arid environments 

are even less common. This is surprising because abiotic controls are generally 

strong in arid environments (Noy-Meir 1973). 
The aims of our study are therefore twofold: 

i) We attempt to combine validated logistic regression models with remote 

sensing data and GIS-layers to predict presence/absence of abundant species and 

plant communities. To our knowledge, this is the first study of its type in Central 

Asia. 

ii) We test the suitability of this approach for the derivation of distribution maps, 

which are of pivotal importance to species-based conservation efforts (Polasky 

and Solow 2001). 

Methods 

Study Area 

The study area covers the 2x2 km summit region of the Dund Saykhan Mountain, a 

core zone of the Gobi Gurvan Saykhan National Park in southern Mongolia (see 

Fig. 1). The vegetation is dominated by dry montane steppes (Wesche et al. 2005); 
some scrub communities occur but they are mainly restricted to south-facing slopes 

(Wesche and Ronnenberg 2004). Sites receive less than 150-200 mm/a precipitation 

(von Wehrden and Wesche 2007), and rainfall within this continental climate is 

widely restricted to the short vegetation period during summer. Grazing by goats, 

sheep and horses is the prevailing land use in the region. 

Vegetation Sampling 

One hundred 3x3 m plots were randomly chosen using the Hawth Tool plug-m 

(v. 2.1; Beyer 2004) within ArcMap (v. 8.2). To get a sample representative of the 
actual surface area, sampling was stratified according to the level of inclination (in 
10 degrees intervals), which was derived from a digital elevation model based on a 
30x30 metre resolution. In this way the steeper slopes were evenly sampled, while 

they would have been under-represented using a simple plane projection. In the field, 

chosen sites were localized using a GARMIN-GPS unit. Variables recorded included 

species name and cover of all herbal plants, all shrub plants, soil cover and both 

stone cover (loose stones larger than 2 mm) and rock cover (solid bedrock). Plant 

identification followed Grubov (2001), with some modifications given in Gubanov 

(1996) and Grubov (2000). Unknown specimens were collected and determined 
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214 H. von Wehrden et al. 

103° 48' 

Fig. 1 Map of the study area (2x2 km) showing the locations of the 100 (stratified) randomized plots. 
The background is a Landsat layer (combination of ch7, ch4 and chl, shown as Red-Green-Blue), which 
we transformed to a greyscale palette. Black lines are 20-m contour intervals. The smaller inset (above) 
shows the location of the study area (arrow). The grey outline indicates the boundaries of the Gobi Gurvan 

Saykhan National Park 

afterwards at the herbaria of Ulaanbataar (see Acknowledgements) and Halle 

(Germany). Sampling followed standard protocol (Mucina et al. 2000). 

Plant Community Classification 

Species data were sorted in the Juice package (Tichy 2002). Initial Detrended 

Correspondence Analysis (DCA) indicated a moderate heterogeneity within the 
dataset (length of gradient of the first axis 3.59, see McCune et al. 2002). For initial 
data analysis we therefore used Ward's clustering algorithm based on squared 
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Predictive mapping of plant species in Mongolia 215 

Euclidian distance, with the classification of plant communities being slightly 

modified manually afterwards. The obtained clusters corresponded well to 

communities derived in previous studies by numerical and phytosociological 

methods (Wesche and Ronnenberg 2004). 

GIS Layers and Remote Sensing Data 

All vegetation releves were imported into a master shapefile using ArcMap 

(v. 8.2). We derived predictors from Landsat 5 data, which is a standard sensor 
in ecological applications (Nagendra 2001; Cohen and Goward 2004). The 
median of the vegetation cover within our dataset ranges around 30%, as such the 

sensor should be able to receive a vegetation signal, at least for the more 

productive sites. Data was obtained from the global Landcover facility (http://glcf. 
umiacs.umd.edu; Landsat 5 TM, path 132, row 30, scene acquired on the 2 Jun 

1992, see Fig. 1; data is orthorectified, thus terrain relief distortions have been 

removed; the acquisition year received average rainfall compared to the overall 

mean); we expect that this data sufficiently covers the vegetation dynamics, 

because it is dated from the peak of the vegetation period. We did consider the 
effects of the atmosphere as a part of the signal received by the sensing device 

(Bernstein 1983). Standard Landsat transformations were computed, such as NDVI 

(channel 4 - channel 3/ channel 4 + channel3; channel 3 is the red band, channel 4 

the near-infrared band), TNDVI (sqrt ((channel 4 - channel 3 / channel 4 + channel 

3) +0.5)), VEGIN (channel 4 - channel 3), all of which provide information on 

primary productivity (Campbell 1996). Another transformation, the Tasseled Cap, 
was also applied on the data. This index compensates for the soil background 

signal (Crist and Cicone 1984): the first Tasseled Cap channel provides data on soil 

signature (brightness), while the second channel relates to vegetation (greenness), 

and the third captures information on the interaction of soil and vegetation 
(wetness). Transformations of Landsat data emphasizing mineral composition 

(mineral composite channels, see Dogan 2007 for details) were also used: the first 

mineral composite channel shows clay minerals, the second shows ferrous minerals 

and the third provides information on iron oxide. In all transformations, higher 

values indicate a higher proportion of the examined factor, e.g., higher Tasseled 

Cap 2 values indicate a higher greenness. 

Another set of implemented predictors were principal components analysis axes 

derived from Landsat channels 1-5 and 7; these six channels have the same spatial 
resolution (30x30 metres), whilst channel 6 is coarser (120x 120 metres). 

A digital elevation model was compiled based on SRTM data (90><90 metres; 
Rabus et al. 2003, Jarvis et al. 2006) for the study area, which was resampled to the 
30x30 m resolution of the Landsat data; afterwards slope and aspect were 

calculated. Northness was calculated as the cosine transformation of the aspect in 

degrees. In addition, we calculated the species richness and the Shannon index as 

predictor variables; however, these were not available as remote sensing predictors. 

For an overview of the employed predictors see Table 1. The correlation structure 

among these predictors was assessed with a second PCA (principal components 

analysis), which included all predictors. The loadings of the individual predictors on 

the first and the second PCA-axes are shown in Table 1. Ecological interpretation of 
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Table 1 Predictors used in our study. Note that topological sets were reprocessed to meet the spatial 
resolution of the Landsat data. The abbreviation "ch" represents the Landsat channels. The last two 
columns show the loadings of the predictors on the first axes of a PCA (data centred and standardized). All 

predictors except the two in the lowermost lines were spatially available 

Predictor Description Abbreviation PCA1 PCA2 

Altitude SRTM-Data alt 0.091 0.343 

Northern aspect SRTM-Transformation north 0.258 0.290 

(cosine-transformed) 

Slope SRTM-Transformation slope 0.003 0.028 

NDVI (ch4 
- 

ch3) / (ch4 + ch3) ndvi 0.960 0.970 

TNDVI sqrt((ch4 
- ch3 / ch4 + ch3) + 0.5) tndvi 0.958 0.966 

Vegetation index ch3 - ch4 vegin 0.959 0.963 

Tasseled cap 1 see Kauth and Thomas (1976) tcl 0.048 0.873 

Tasseled cap 2 see Kauth and Thomas (1976) tc2 0.930 0.981 

Tasseled cap 3 see Kauth and Thomas (1976) tc3 0.256 0.939 

PC A 1st axis chl to ch7 PCA1 0.037 0.872 

PCA 2nd axis chl to ch7 PCA2 0.509 0.932 

Mineral composite ch 1 ch5/ch7 min 1 0.416 0.820 

Mineral composite ch 2 ch5/ch4 min 2 0.027 0.602 

Mineral composite ch 3 ch3/chl min 3 0.207 0.824 

Number of species Species per plot species 0.039 0.070 

Shannon index Species per plot, normalized by the Evenness Shannon 0.0001 0.031 

the remotely sensed predictors was additionally aided by regressions between 

sampled environmental parameters (e.g., field layer cover) and remotely sensed 

predictors (e.g., NDVI), results of which are given in the text. 

Modelling Approach 

Regression models were constructed for all abundant species («> 10%, i.e., occurring 

in more than 10 releves); the prostrate shrub Juniperus sabina (n=l) was however 

included in the analysis due to its importance to conservation. We are aware of the 

problem of Type I error inflation in multiple model studies, but because the primary 
goal of our study was to provide an initial screening and habitat preference analysis 

of the species/communities to evaluate the method itself as well as its value to nature 

conservation we nevertheless refrained from correcting the family-wise Type I error 

rate (Roback and Askins 2005). 
Nagelkerke r2 (Nagelkerke 1991) and the Akaike information criterion AIC 

(Akaike 1978) were used for a primary evaluation of the data. No more than one 
interaction term was considered so that parsimonious and ecologically interpretable 

models could be derived. Quadratic terms were not applied, because manual 

inspection using scatter-plots and initial ordination analyses indicated that gradients 
were probably not unimodal (1st DCA-axis: 3.59). All models were tested for 
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Predictive mapping of plant species in Mongolia 217 

significance using chi-squared tests and were later validated using the AUC (area 

under the receiver operating characteristic curve, see Hanley and McNeil 1982). 

Model Validation 

It has been suggested that models running at an AUC>0.7 are acceptable and often 

better (Hosmer and Lemeshow 2000). Because no independent validation dataset 

was available, data splitting was applied by randomly dividing the dataset into two 
even parts (50:50, see Steyerberg et al. 2001). 

Mapping 

The validated models were used to predict the probability of occurrence in the 2x 

2 km study area; results of all models were plotted and maps of all models were 

derived at the resolution of the spatial predictors (30x30 metres). All statistical 
models were calculated and validated using the R-package (R Development Core 

Team 2007). 

Results 

Based on the cluster analysis, seven communities were derived. A total of 156 

species and seven communities were sampled, of which 52 species and five 

communities surpassed the criterion of 10% frequency within the dataset and were 

thus modelled. For 11 species, no significant models could be generated; models for 

another seven species and one community did not meet the AUC-threshold, but were 

nonetheless significant. Thus, 34 species and four community models with AUC 

values>0.7 were obtained (see Table 2). Twelve species were, however, not 

predictable by spatially available predictors, but only by biodiversity, namely 

species richness and the Shannon index. 

Almost half of the statistically significant predictors were topographical variables; 

altitude was the single most important parameter (see Fig. 2). Remotely sensed 

predictors also contributed to significant models and, overall, the various Tasseled 

Cap transformations represented the most important Landsat-derived variables 

(Table 2, Fig. 2). Figure 3 gives the model for Festuca valesiaca as an example of 

an interaction between altitude and the second Tasseled Cap channel, which reflects 

vegetation patterns. The probability of occurrence of Festuca valesiaca rises with 

increasing altitude, yet the negative coefficient for Tasseled Cap 2 suggests a higher 
abundance with lower greenness/vegetation cover (Fig. 3). The same applies for the 
Festuca community (Table 2). Other predictors such as the principal components 
derived from all Landsat channels, standard NDVIs and the mineral composite rarely 
contributed to valid models. One of the few exceptions was the model for Stipa 

krylovii (Fig. 4), which included an interaction of altitude and the second PCA-axis 
of the Landsat channels. 

Biodiversity in the working area is best explained by the interaction between 

altitude and northern exposure (see Fig. 5); the minimum species richness found on 

one single site was four species, the highest was 31. 
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Table 2 Valid models derived in this study. For the abbreviations of the predictors see Table 1. The 
number of occurrences of the given community/species is shown in the second column on the left. The 
lower 12 species separated by a line were only predictable for biodiversity 

Species/communities n Predictors P Explained AUC Nagelkerke 
deviance (%) 

Artemisia santolinifolia community 20 alt <0.01 14.61 0.86 0.23 

Festuca community 11 alt + tc2 <0.05 27.95 0.77 0.22 

Juniperus community 7 min2 * tc3 <0.05 37.03 0.90 0.41 

Kobresia community 24 alt * pca2 <0.001 73.74 0.84 0.49 

Agropyron cristatum 66 alt <0.05 9.62 0.70 0.15 

Allium eduardii 12 alt + vegin <0.05 25.63 0.81 0.32 

Arenaria meyeri 62 ndvi + tcl <0.01 11.56 0.71 0.26 

Artemisia pycnorhiza 24 min3 * alt <0.01 40.09 0.74 0.41 

Artemisia santolinifolia 47 alt <0.001 31.91 0.73 0.31 

Bupleurum bicaule 15 alt + tc2 <0.01 14.68 0.83 0.23 

Bupleurum pusillum 17 alt * north <0.001 78.96 0.73 0.20 

Carex stenophylla 26 pca2 <0.05 7.08 0.73 0.12 

Cerastium arvense 20 alt + north <0.001 34.66 0.70 0.46 

Clausia aprica 17 slope + min3 <0.01 17.06 0.72 0.50 

Ephedra monosperma 17 tc2 * mini <0.01 28.91 0.81 0.28 

Festuca valesiaca 59 alt + tc2 <0.05 12.15 0.81 0.54 

Juniperus sabina 7 min2 * tc3 <0.05 37.03 0.90 0.41 

Kobresia myosoroides 22 pca2 
* tc2 <0.001 53.16 0.91 0.61 

Lophanthus chinensis 14 alt + tc3 <0.001 27.66 0.73 0.44 

Papaver croceum 23 alt + min2 <0.001 51.29 0.76 0.62 

Poa stepposa 13 alt <0.001 31.91 0.76 0.41 

Ptilotrichum canescens 23 tc2 <0.05 7.76 0.72 0.12 

Rhodiolia rosea 33 alt * pca2 <0.01 20.79 0.80 0.20 

Stipa krylovii 17 alt * pca2 <0.001 45.39 0.98 0.60 

Taraxacum dealbatum 10 mini <0.05 22.40 0.73 0.30 

Thymus gobicus 16 tc2 <0.05 9.59 0.77 0.15 

Koeleria altaica 12 species <0.05 0.005 0.75 0.31 

Allium tenuissimum 57 species <0.05 15.33 0.75 0.36 

Amblvnotus rupestris 18 species <0.001 13.99 0.81 0.21 

Artemisia phaeolepis 19 species <0.01 34.75 0.72 0.44 

Aster alpinus 44 species <0.001 25.13 0.82 0.39 

Astragalus miniatus 22 species <0.01 10.32 0.87 0.16 

Limonium flexuosum 41 species <0.001 13.71 0.76 0.23 

Phlojodicarpus sibiricus 42 species <0.001 16.96 0.77 0.28 

Poa attenuata 39 Shannon <0.01 20.14 0.73 0.13 

Potentilla sericea 50 species <0.001 23.09 0.75 0.16 

Saussurea pricei 17 species <0.001 8.66 0.77 0.14 

Silene jenessiensis 35 species <0.001 20.42 0.77 0.20 
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slope & aspect 

mineral composites 

data 

vegetation indices 

Tasseled Cap 

Fig. 2 Proportion of significant predictors (chi2) summed over all models meeting the AUC-criterion 

Discussion 

Model Performance 

The clear altitudinal gradient determines the distribution of a large fraction of the 
modelled species (Table 2 and Fig. 1); this gradient widely equals a precipitation 
gradient in our working area (Retzer 2004). Thus, the high importance of altitude as 
a predictor within our analyses highlights the close abiotic control of plant species 

within our study area. The high importance of soil-related, remotely sensed 

predictors (both Tasseled Cap and standard mineral composite predictors, e.g. 

Fig. 3) indicates the dependency of several species on solid bedrock or screes, 

respectively. Correlation analyses revealed for instance that Tasseled Cap 2 showed a 

negative correlation with stone cover in our study region (r2=0.26, P<0.001). The 

probability of occurrence of Festuca valesiaca (Fig. 2) was higher at lower Tasseled 

Cap 2 values, which would consequently indicate higher stone cover. 

Fig. 3 Contour plot showing results of the logistic regression (left) and prediction map (right, cf. Fig. 1) 
derived from the model for Festuca valesiaca. The legend bar gives the probability of occurrence ranging 
from 0 (lowest) to 1 (highest) 
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Fig. 4 Contour plot showing results of the logistic regression (left) and prediction map (right) derived 
from the model for Stipa krylovii. The legend bar gives the probability of occurrence ranging from 0 

(lowest) to 1 (highest) 

Interpretation of the PCA transformations of Landsat data is less straightforward. 

The first PCA-axis of the Landsat data did not contribute to any distribution model 
because it was redundant with other predictors such as Tasseled Cap 1 (Pearson 

coefficient = 0.98, P<0.001; see also PCA loadings given in Table 1); this 
underlines once again that most of the spectral variance within our study area is 

related to soil parameters, because the Tasseled Cap 1 indicates brightness. The 

second PCA axis contained more information on cover of the field layer (^=0.14, 

P<0.001) and led to several significant models (see Table 2 and Fig. 4). 
The predictable communities often showed a unique signature within Landsat 

derived predictors; only the Artemisia santolinifolia stands were predicted solely by 

Fig. 5 Contour plot showing results of the linear model (r^=0.44, P<0.001) for the number of species in 
the study area (left). Altitude is derived from the SRTM-data. The map (right) shows the plotted model 
based on spatial predictors. The legend bar gives the modelled number of species per 9 m2 
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altitude, which is not surprising because these are restricted to lower slopes within 

the study area (Wesche and Ronnenberg 2004). 

Prediction Errors 

Fielding and Bell (1997) divide prediction errors into two general types: "biotic" and 

"algorithmic". A possible explanation for the presence of unpredictable habitat 

preferences of several species may be a lack of information on biotic controls within 

our predictor set. Some unpredictable species are prominent indicators of grazing 

(e.g., Chenopodium spp.; see Wesche et al. 2005). Other unpredictable species are 
characteristic species of montane sites (e.g., Artemisia frigida, Polygonum alpinum, 

see Hilbig 1995), however, our predictor set could not derive a valid habitat 

preference. Moreover, competition might be a further factor leading to poor model 

performance within our approach. 

The second category of prediction errors ("algorithmic") would demand more 

sampling to gain a better understanding of processes and responses. Because the 

unpredictable species were generally abundant (frequency range 11%—59%), we 

expect that more intense sampling would enhance only a few of the habitat 

preference models. Instead, it seems more likely that our data set lacks important 

environmental predictors, as discussed by Peppler-Lisbach and Schroder (2004). For 
some species that were not predictable by our remotely sensed predictor set, only the 

number of species per plot (lower part of Table 2) enabled valid models, i.e., by 
using values gained from the releve data itself; however, we could not derive a 

spatial model by this prediction. If we had sampled all variables relevant for 

biodiversity we would perhaps have been able to predict some of these species as 

well. 

Missing Predictors 

Other predictors such as soil maps would surely increase model performance, yet 
data is only available on coarse scales (>1:1,000,00) within Central Asia. Additional 

unmeasured predictors such as fog presence (Martorell and Ezcurra 2002) and snow 

cover (Heegaard 2002) may hold a key to the prediction of the habitat preference of 

at least some of the species unpredictable using our approach. For instance, winter 

snow accumulation may be a limiting factor for the distribution of juniper (Wesche 
and Ronnenberg 2004), thus the ecological interpretation might be enhanced with 

such predictors. 

Scale Limitations 

Scale is another obvious potential limitation, because small microhabitats are not 

reflected at a 30x30 metre resolution, which is much coarser than the sample plot 

size (3x3 metres). Almost all non-significant models share one unifying factor: their 
occurrence is often connected to limited heterogeneous micro-sites (e.g., Orostachys 

spinosa, Rheum undulatum, Pedicularis flava). This could perhaps be compensated 

by remote sensing data with a finer resolution, e.g., Ikonos, Quickbird, both of 
which are more cost-intensive and demand greater computing capacities. However, 
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the authors of a recent study of mountains in Israel questioned the assumed 

superiority of a higher sensor resolution for detecting the overall plant species 

richness (Levin et al. 2007). In addition, these high spatial resolution satellites have 

only four channels in the visible to near-infrared spectrum, and as such some of the 

mineral indices cannot be calculated from them. Regarding our study region, 

the now public-domain altitude data from the shuttle mission (Jarvis et al. 2006) and 
the Landsat image have proved adequate for most of the cases presented above. 

Further downslope (<2,500 m), the validity of these predictors may be partly altered, 

because the relief is less pronounced and the vegetation cover decreases. 

Options for direct vegetation mapping using Landsat data may be limited due to 

the spatial resolution of the sensor (30x30 metres, see Nagendra 2001), yet our 

results show that predictors that take the soil background into account are suitable 

indirect predictors for arid environments (Crist and Cicone 1984; Campbell 1996). 
Correspondingly, the abundance of several species increased with an increasing soil 

signal, while species typical for the denser Kobresia-mats had an increased 

probability of occurrence with a higher vegetation cover. Apparently, Landsat 

predictors can capture information in both the dense vegetation cover and the rocky 

higher montane slopes. 

Overall Plant Biodiversity 

Although we could only model the habitat preferences for a fraction of the species, we 

were nonetheless quite successful in modelling species diversity (^=0.44, /><0.001). 
Figure 5 illustrates that in the study area biodiversity is related to altitude and 

exposure. An increase in biodiversity with altitude is commonly found in alpine 
environments (Bruun et al. 2006), as long as temperature or competition does not 

constrain species richness, which would lead to hump-shaped vertical patterns. Both 

altitude and northern exposure indirectly define water availability, because rainfall 

increases with altitude in the study area (Retzer 2004; Retzer et al. 2006; von 

Wehrden and Wesche 2007), and northern exposures have lower evapotranspiration 

(Wesche et al. 2005; Miehe et al. 2007). A large-scale analysis of areas ranging from 

900-2,950 m showed that moisture availability, productivity and cx-diversity are 

closely related in southern Mongolia (von Wehrden and Wesche 2007), supporting 

the inferences made here. 

Conclusions 

Our approach contributes to the further understanding of the arid-environment 

habitat preferences of plant species and communities, and derives distribution maps 

at a Landsat resolution of ~30><30 metres. The methods are widely applicable 
because all used datasets are free of charge and available worldwide. This is 

especially relevant to Mongolia where conservation is faced with a fundamental lack 

of spatially explicit information. With respect to the ambitious protection plans of 
the Mongolian government (Reading et al. 1999, 2006), more data are urgently 

required and we have already started a survey of the protected areas of arid southern 

Mongolia (adding up to 100,000 km2, von Wehrden and Wesche 2007). We hope 
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that this, and subsequent studies of similar focus described in the present paper, will 

facilitate the conservation of Central Asia's remaining intact steppes. 
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