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The land cover fractions (LCFs) and spectral reflectance of photosynthetic vegetation (PV), nonphotosyn-
thetic vegetation (NPV), and bare soil were measured at 58 sites in semi-arid and arid regions of Mongolia in
the summers of 2005 and 2006. These data sets allowed a detailed assessment of the impact of measurement
geometry as represented by the solar zenith angle θs, sensor view zenith angle θv and azimuth view angle ϕ
in the estimation of LCF values by means of the spectral unmixing model (SUM). The bidirectional
distribution function (BRDF) was fitted to the reflectance data and then used to produce reflectance at
various measurement geometries. LCFs from these reflectance data for a given combination of θs, θv, and ϕ
were compared with visually determined LCFs. It was found that θs in the range of 30–45° produced a better
agreement of LCFs. For θv, the agreement is not very sensitive to the choice of angle for the range 30–70°,
although θv=50° showed a slightly better performance. The azimuth view angle does not have strong
influences to the LCF estimation, except for the case of ϕ=180° (view toward the sun), which does not allow
precise fitting of BRDF function over a tall vegetation site. Overall, this study verified the results of earlier
studies obtained mostly for the American continents that SUM is capable of producing LCF estimates
accurately and also found that its accuracy was, in general, much better than that by the more traditional
approach of the supervised classification method (SCM) applied to images of a digital camera.
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1. Introduction

In terrestrial ecosystem, land cover plays an important role in the
transfer of energy, momentum, and scalar admixture such as water
vapor between the Earth's surfaces and the atmosphere. This, in turn,
affects the magnitude and timing of carbon fixation, respiration, and
nutrient cycles. It is thus essential to evaluate the land cover fractions
(LCFs) of photosynthetic vegetation (PV), nonphotosynthetic vegeta-
tion (NPV), and bare soils. However, it has been found difficult to
estimate LCFs with traditional approaches. For example, photograph
images have been used to classify the surface covers by means of the
supervised classification method (SCM) (White et al., 2000; Li et al.,
2005b), the ocular estimation, the sampling belt, and the photo-
graphic methods (Li et al., 2005b). However, Zhou et al. (1998) have
shown that different methods may lead to significantly different
outcomes particularly when the target area is large. Similarly, multi-
channel sensors aboard satellite have also been used for this purpose
because it is desirable to utilize remote sensing technology for the
assessment and monitoring of LCFs over larger areas and over a long
period. Again, usefulness of these traditional sensors for this purpose
has been found to be limited in many cases (Asner and Lobell, 2000;
Carlson and Ripley, 1997). The main difficulty stems from the coarse
horizontal resolution of these sensors. A typical scale of horizontal
variations of LCFs is often much smaller than the pixel size of the
satellite sensors.

As an alternative approach, the spectral unmixing model (SUM)
has been developed to derive LCFs of PV, NPV, and bare soil covers at
the sub-pixel level from a pixel mean reflectance ρp̅(λ) measured at
wavelength λ. The determination of sub-pixel LCFs relies on an
endmember analysis (Asner and Lobell, 2000). In the present case, the
endmembers are the spectral reflectance ρi(λ) (for i=1 to 3) of PV,
NPV, and bare soil, and ρp̅(λ) is assumed to be given as a weighted
average of ρi(λ) by

ρp λð Þ = ∑
n

i=1
Ci · ρi λð Þ½ � + ε ð1Þ

where theweighting factors Ci is the cover fraction of the i-th land cover

component to be determined, and ∑
n

i=1
Ci = 1. ε is the error term.

Because the number of endmember is three, in theory, the reflectance
data at theminimumof twowavelengths should allowdetermination of
LCFs. With multi-channel or hyperspectral measurements, this can be
accomplished. Usually, there are a redundant, large number of possible
selections of λ, particularly for hyperspectralmeasurements, and awide
rangeof acceptable unmixing could beobtained. This has been solved by
employingMonte Carlo analysis to account for the natural variability of

mailto:ibyamba@geoenv.tsukuba.ac.jp
mailto:sugita@geoenv.tsukuba.ac.jp
Unlabelled image
http://dx.doi.org/10.1016/j.rse.2010.05.013
Unlabelled image
http://www.sciencedirect.com/science/journal/00344257


2362 I. Byambakhuu et al. / Remote Sensing of Environment 114 (2010) 2361–2372
endmembers through the calculation of uncertainty for each pixel
endmember constituents (Asner and Lobell, 2000; Asner and Heideb-
recht, 2002). Thus, the mean and the standard deviation of the derived
values for each LCF are determined from large number of λ combina-
tions, and not only the estimates of LCFs but also some indication of
accuracy can be obtained. Other proposals to make use of this large
number of combinations have also been made (e.g., Chen et al., 2009).

As outlined above, the general framework of this approach is
straightforward, and there is a potential to apply this method to
determine LCFs from images taken remotely by the aircraft or satellite.
In fact, Asner andLobell (2000) and Lobell et al. (2002) have successfully
tested the applicability of this methodwith the data set obtained by the
airborne instrument above the test sites in US. However, there are
several issues that need to be addressed before such an application over
even larger areas becomes acceptable. Among them, one concern is a
possibility that spectral endmembers that have been found to produce
LCF estimateswell for one regionmaynot be applicable to other regions.
Therefore, careful examinations of this method in a wide range of areas
and surface conditions are essential. The SUM approach has been tested
mostly in the American ecosystems, and not much is known on the
applicability to the other regions of the world.

Second, spectral data are usually obtained at a certain combinationof
sensor view geometry and solar position, and notmuch is known on the
influence of the selection of these angles to the final LCF estimates. For
example, the only study that treated the effects of sensor view angles is
probably that by Lobell et al. (2002). They found that the variability in
LCFs due to the change of sensor view angle was small when the SUM
wasappliedwithhyperspectral images. Toourknowledge, the influence
of the different solar position on the land cover estimates has not been
studied. A common approach to avoid this second issue is to carry out
observations at the time of the same or similar solar position. For
example, thefield observations could be restricted for only around noon
of each day in the same season of the year. However, such observation is
quite time consuming as only certain portion of the day or season can be
spent for actual measurements. Moreover, for satellite or aircraft
measurements, this is impractical because the choice of the observation
(i.e., overpass) time is limited or nonexistent on the observer's side. For
observations to be carried out at any time of the daylight hours, it is
necessary to investigate the impact of the solar position to the final
estimates. If the effects are found not negligible, it is further necessary to
correct or minimize such effect on to the final LCF determination.
Fig. 1. Vegetation map of Mongolia (Saandar and Sugita, 2004) with the main observation ar
semi-arid region, and stars represent those in arid area. Location names are as follows.
Undurkhaan, MNG: Mandalgobi, and BUL: Bulgan. The details of each site are listed in Tabl
These are thebrief backgroundof LCF estimates bymeans of the SUM
approach. To shed some light on these remaining problems in this
approach, particularly on the effects of measurement geometry to the
LCF estimates, an attempt was made to use bidirectional distribution
function (BRDF) to convert reflectance taken at arbitrary view angles to
a predetermined standard condition. This way, the effects of the
measurement geometry can be studied in a consistent manner and for
the sensor view geometry and solar angles not encountered during
actual measurements. For the data acquisition, field experiments were
carried out in one of the least studied regions of theworld, Asian steppe
region in Mongolia. The steppe extends further towards central Asia,
and as a whole, it constitutes the largest grasslands belt region on earth
(Shiirevdamba, 1998). Therefore, a test in this region should benefit to
increase the extent of areas where the usefulness of the SUM approach
has already been established. As a reference of the test of the LCF
estimates by means of SUM approach, those estimates from digital
camera image based on more conventional supervised classification
method (SCM)were also derived. This is one of themethods that ismost
commonly accepted at present (White et al., 2000).

2. Methods

2.1. Experimental areas and sites

The experimentwas carried out in the summers of 2005 and 2006 in
Mongolia, which is coveredmostly (by some 90%; Shiirevdamba, 1998)
with steppe vegetation where nomadic animal husbandry is the main
land use. Seven study areas were selected in semi-arid and arid regions
ofMongolia (Fig. 1) to cover awide variety of vegetation groups.Most of
the areas in the semi-arid region are located within and around the
Kherlen river basin (48° 30′ N–46° 30′ N and 108° 15′ E–110° 45′ E) in
the northeasternpart ofMongolia. The annual precipitation ranges from
150 to 300 mm (Saandar and Sugita, 2004), and more than 70% of
precipitation fall only during the summer period from June to August.
The vegetation in this region is a typical short-grass steppe and is
dominated mostly by the cool season C3 (mainly Stipa krylovii, Carex
duriuscula, Artemisia adamsii, Artemisia frigida, Leymus chinensis, and
Caragana microphylla) and some C4 species (Cheistogenes squarrosa) (Li
et al., 2005a). The details of this region are described in Sugita et al.
(2007) and in related studies in the same special issue for the Rangeland
Atmosphere–Hydrosphere–Biosphere Interaction Study Experiment in
eas of semi-arid and arid regions, major rivers and lakes. Circles represent study areas in
JGN: Jargaltkhaan, BGN: Baganuur: KBU: Kherlenbayan-Ulaan: DRN: Darkhan, UDH:
e 1.
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Northeastern Asia (RAISE) project (Sugita et al., 2007), from which the
data sets used for this study were obtained. In the southern arid region,
two study areas of Bulgan in Southern Gobi (44° 25′ N–44° 01′ N and
103° 57′ E–103° 70′ E) and ofMandalgobi (45° 94′N–45° 67′Nand106°
23′ E–106° 47′ E) were selected as the targets for the field measure-
Table 1
List of the observational sites with some observational results.

Site
name

Location Time
(LST)

Date Sky
condition

Land cove
(%)

Longitude (°) Latitude (°) PV NPV

Semi-arid
KBU 1 108.74 47.22 10:40 31/07/2005 Clear 35 55
KBU 2 108.74 47.21 11:25 31/07/2005 Clear 45 50
KBU 3 108.75 47.23 12:35 31/07/2005 Clear 38 42
KBU 4 108.74 47.22 15:40 31/07/2005 Clear 30 15
KBU 5 108.74 47.22 15:55 31/07/2005 Clear 32 18
KBU 6 108.74 47.22 16:35 31/07/2005 Clear 25 15
KBU 7 108.73 47.21 9:50 01/08/2005 Clear 35 50
KBU 8 108.73 47.21 11:10 01/08/2005 Cloudy 40 10
KBU 9 108.71 47.22 11:35 01/08/2005 Cloudy 70 5
KBU 10 108.71 47.22 12:11 01/08/2005 Cloudy 75 5
KBU 11 108.64 47.22 14:35 01/08/2005 Cloudy 57 40
JGH 1 109.31 47.31 10:10 02/08/2005 Cloudy 45 25
JGH 2 109.47 47.49 10:45 02/08/2005 Clear 60 5
JGH 3 109.50 47.50 12:20 02/08/2005 Clear 60 5
JGH 4 109.48 47.51 15:25 02/08/2005 Clear 55 10
JGH 5 109.47 47.48 16:30 02/08/2005 Cloudy 65 15
JGH 6 109.47 47.48 17:15 02/08/2005 Cloudy 37 3
JGH 7 109.47 47.48 17:55 02/08/2005 Cloudy 55 5
JGH 8 109.66 47.46 9:15 03/08/2005 Cloudy 70 20
JGH 9 109.74 47.40 10:05 03/08/2005 Cloudy 80 10
UDH 1 110.02 47.38 11:55 03/08/2005 Cloudy 65 10
UDH 2 110.62 47.31 16:20 03/08/2005 Clear 63 2
UDH 3 110.62 47.31 17:15 03/08/2005 Clear 85 5
UDH 4 110.07 47.31 18:55 03/08/2005 Clear 75 10
UDH 5 110.67 47.26 9:25 04/08/2005 Clear 80 10
UDH 6 110.30 47.01 11:05 04/08/2005 Clear 60 5
DRN 1 109.66 46.80 13:05 04/08/2005 Clear 65 5
DRN 2 109.66 46.80 13:35 04/08/2005 Clear 20 3
DRN 3 109.41 46.63 13:36 04/08/2005 Clear 25 10
DRN 4 109.40 46.64 17:45 04/08/2005 Clear 60 10
DRN 5 109.40 46.64 19:05 04/08/2005 Cloudy 75 5
BGN 1 108.36 47.78 11:00 06/08/2005 Cloudy 80 10
BGN 2 108.36 47.78 11:30 06/08/2005 Cloudy 65 5
BGN 3 108.36 47.78 12:00 06/08/2005 Cloudy 80 5

Arid region
MNG 1 106.41 45.86 8:50 02/08/2006 Clear 30 5
MNG 2 106.41 45.85 9:40 02/08/2006 Clear 40 1
MNG 3 106.27 45.73 10:30 02/08/2006 Clear 35 1
MNG 4 106.27 45.84 11:15 02/08/2006 Clear 45 3
MNG 5 106.27 45.83 12:05 02/08/2006 Clear 80 5
MNG 6 106.27 45.84 13:50 02/08/2006 Clear 55 3
MNG 7 106.28 45.66 15:05 02/08/2006 Clear 96 1
MNG 8 106.41 45.79 16:05 02/08/2006 Clear 30 5
MNG 9 106.24 45.94 9:05 03/08/2006 Clear 90 5
MNG 10 106.24 45.92 9:50 03/08/2006 Clear 70 5
MNG 11 106.25 45.92 10:15 03/08/2006 Clear 65 5
MNG 12 106.27 45.77 11:10 03/08/2006 Clear 40 5
MNG 13 106.47 45.81 13:25 03/08/2006 Clear 40 5
MNG 14 106.47 45.81 14:30 03/08/2006 Clear 15 5
MNG 15 106.47 45.81 14:55 03/08/2006 Clear 25 5
MNG 16 106.43 45.80 15:40 03/08/2006 Clear 90 5
MNG 17 106.43 45.80 16:55 03/08/2006 Clear 35 5
BUL 1 103.66 45.01 8:45 05/08/2006 Clear 35 5
BUL 2 103.66 45.01 9:15 05/08/2006 Cloudy 80 5
BUL 3 103.57 45.05 10:30 05/08/2006 Cloudy 37 5
BUL 4 103.70 45.13 11:30 05/08/2006 Cloudy 25 5
BUL 5 103.64 45.25 14:15 05/08/2006 Cloudy 10 5
BUL 6 103.64 45.25 14:40 05/08/2006 Cloudy 10 5
BUL 7 103.64 45.25 16:25 05/08/2006 Cloudy 15 5

LST: local standard time, PV: photosynthetic vegetation, NPV: nonphotosynthetic vegetation
Baganuur, MNG: Mandaligobi, and BUL: Bulgan. The biomass is given for dry weight.
ments. The annual precipitation here ranges from 100 to 150 mm
(Sasaki et al., 2005).

Within each study area, the sites for the actual measurements were
selectedat random,but itwas ensured that each site represents, and is at
the center of, the homogeneous (in a statistical sense, meaning that the
r fractions Biomass
(g/(0.25 m2))

Soil moisture
(%)

Vegetation species Vegetation
height
(cm)

Bare soil PV NPV

10 16.9 33.5 9 Artemisia adamsii 11
5 18.4 52.8 10 Stipa krylovii 13

20 15.2 24.1 8 Stipa krylovii 14
55 12.2 20.6 12 Carex duriuscula 3
55 7.70 13.4 9 Carex duriuscula 4
60 13.9 27.3 10 Potentilla tanacetifolia 5
15 7.90 54.9 10 Cleistogenes squarrosa 3
50 7.30 3.50 9 Cleistogenes squarrosa 2
25 36.8 4.70 8 Cleistogenes squarrosa 10
20 14.3 7.30 8 Chenopodium glaucum 6
3 34.0 12.9 9 Stipa krylovii 15

30 9.10 24.2 14 Potentilla tanacetifolia 8
35 12.8 2.50 13 Stipa krylovii 3
35 11.2 0.90 36 Artemisia adamisia 5
35 10.9 10.7 13 Stipa krylovii 4
20 26.5 41.6 12 Potentilla bifurca 9
60 17.2 1.40 13 Artemisia frigida 5
40 27.8 8.90 15 Kochia spp 6
10 42.5 31.6 9 Artemisia frigida 13
10 42.2 22.3 10 Artemisia adamsii 15
25 24.6 11.2 10 Stipa krylovii 10
35 24.6 2.70 8 Leymus chinensis 8
5 80.6 76.6 8 Stipa krylovii 13

15 35.3 57.8 6 Stipa krylovii 20
10 38.0 17.2 8 Stipa krylovii 15
35 17.2 15.2 9 Artemisia frigida 13
30 21.7 4.00 6 Leymus chinensis 8
77 4.80 3.80 6 Cleistogenes squarrosa 5
65 8.20 2.20 6 Leymus chinensis 4
30 18.7 4.30 6 Leymus chinensis 3
20 8.40 2.80 8 Leymus chinensis 4
10 44.9 16.8 7 Potentilla spp 8
30 16.9 6.30 6 Artemisia frigida 5
15 51.1 2.20 7 Artemisia frigida 6

65 11.5 0.80 7 Allium polyrhizum 12
59 12.4 0.70 6 Allium mongolicum 10
64 9.30 0.60 8 Allium polyrhizum 13
52 15.6 1.30 7 Allium mongolicum 14
15 16.8 1.80 6 Convolvulus ammonii 9
47 20.9 1.80 5 Scorzyonera divaricata 6
4 35.2 0.20 8 Chenopodium album 11

65 20.6 3.80 7 Kalidium foliatum 14
5 45.7 20.9 7 Caragan microphylla 20

25 10.5 2.70 6 Chenopodium album 7
30 13.1 1.60 7 Artemisia acuminatum 12
55 6.60 0.70 6 Cleislogenes songorica 7
55 12.7 0.50 6 Arenaria capillaries 7
80 8.50 0.30 9 Bupleurum spp 3
70 11.6 0.30 6 Potentilla bifurca 4
5 32.3 1.30 7 Sibbaldiantha sericea 3

60 16.6 1.20 8 Allium polyrhizum 10
60 9.50 0.20 6 Peganum nigellastrum 12
15 12.2 0.90 7 Tribuls terrstric 5
60 3.80 0.50 9 Artemisia pectinata 1
70 8.30 1.30 8 Iris bungei 12
85 4.10 4.50 4 Stipa gobica 2
85 4.80 0.60 6 Oxytropis spp 12
80 5.10 8.10 6 Iris tenuifollia 3

, KBU: Kherlenbayan-Ulaan, JGH: Jargaltkhaan, UDH: Undurkhaan, DRN: Darkhan, BGN:
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surface variability is sufficiently small and constant in space; Brutsaert,
1998) vegetation of greater than 1 m2 and that overall selections
produceawider varietyof different combinationsof LCFs andvegetation
species. As a result, a total of 58 sites (34 from the semi-arid study area
and 24 from the arid study areas) were selected for this study. They are
listed in Table 1 together with the other relevant information such as
vegetation height, species, and biomass.

2.2. Field observations

2.2.1. Land cover survey
At the center of each site, a 0.5×0.5-mquadratwas constructed, and a

land cover survey of the quadratwas carried out. First, the LCFs in terms of
the percentages of PV, NPV, and bare soil were visually determined from
1m above the surface. In the present analysis, they were served as true
LCFs tobecomparedwith those fromSUMandalso fromSCM.Toobtainas
consistent and unbiased estimates of LCFs as possible, the same person
always carried out the visual determination at all sites. Second,
photographs were taken by means of a digital camera (Canon IXY400,
4 Mpixels) at a nadir-looking position from 1m above the surface. The
instantaneous field of view (IFOV) of the digital camera was 0.42 m2.
Finally, after the spectral radiance measurement (see below), all PV and
NPV parts were removed by a clipping method, and the digital camera
image and spectral radiance data of the soil surface were similarly
obtained. As background information, the mean surface soil moisture
(0–12 cm) was determined by means of a time-domain reflectometry
(TDR) sensor (Campbell Scientific, HydroSense), and the vegetation
samples were later oven dried, and their weight (dry biomass) was
measured. The surface soil moisture could be important because it
affects the color of vegetation and soil; biomass is an alternative
indicator of the land cover.

2.2.2. Spectral reflectance
The spectral reflectance of the site was measured within the

wavelength of 350 to 2500 nm with resolution of 10 nm, by a spectro-
radiometer (FieldSpec Pro, Analytical Spectral Devices, Inc.) with an 8°-
sensor foreoptic attached. The radiometer heightwasfixed at 1.5 mabove
the surface, except for the caseof θv=0 forwhich itwas at 1.0 m.The IFOV
was 0.03 m2 for sensor viewzenith angle θv=0° (nadir position), 0.08 m2
Fig. 2. Comparison between the reproduced reflectance by the BRDF function and
measured reflectance values for the three off-nadir sensor view angles (θv=30°, 50°, and
70°) and fourazimuth angles (ϕ=0°, 90°, 180°, and270°). The circle indicates threeoutlier
points from KBU11. The dashed lines indicate the regression equation ŷ=a+bx,
(a=0.022 and b=0.73 for θv=30°, a=0.016 and b=0.83 for θv=50°, and a=0.010
and b=0.89 for θv=70°), fitted to all points except for the outlier points.
for θv=30°, 0.24 m2 for θv=50°, and 0.93 m2 for θv=70°. This way, IFOV
of the radiometer always includes the selected 0.5×0.5-m quadrat, and
the view within IFOV consists of the same land cover represented by the
quadrat, for all selected sensor off-nadir viewing angles.

The experiment at each site included the bidirectional spectral
reflectance measurements at eight azimuth view angles starting from
the solar direction (ϕ=0°) and every 45° from ϕ=0°, and at θv of 30°,
50°, and 70° at each azimuth angle. This, together with the measure-
ments at a nadir-looking position θv=0, produced 25 bidirectional
reflectancedata setswithin approximately 20 min at each site. Themean
directional radiancewasdividedby the incomingcomponentsmeasured
as reflected radiance by a white reference panel, to derive the surface
Fig. 3. Typical rawreflectanceof PV(dotted),NPV (solid), andbare soil (dashed) (toppanel);
the tied reflectanceof PV (middlepanel); and thederivative reflectance of PV (bottompanel)
in the range of 2000–2400 nm.

image of Fig.�2
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Table 2
Statistics for the comparison between visually determined LCFs and estimated LCFs
from SUM with BRDF for the three values of θs and from SUM without BRDF (raw
spectra).

Converted spectra by BRDF Raw spectra

Vegetation species RMSE r RMSE r

θs 30° 45° 60° 30° 45° 60°

Photosynthetic vegetation (PV)
Stipa krylovii 4.09 4.60 6.38 0.97 0.93 0.98 4.28 0.95
Leymus chinesis 2.70 3.82 4.33 0.98 0.96 0.97 7.77 0.95
Cleistogenes squarrosa 3.04 4.52 4.59 0.98 0.96 0.98 5.00 0.98
Allium polyrhizum 5.11 6.09 7.67 0.74 0.74 −0.14 5.34 0.98
Combined 2.98 2.39 3.11 0.97 0.96 0.95 3.89 0.95

Nonphotosynthetic vegetation (NPV)
Stipa krylovii 2.89 2.74 5.06 0.98 0.97 0.94 4.99 0.95
Leymus chinesis 3.43 2.06 2.47 0.98 0.96 0.96 4.61 0.98
Cleistogenes squarrosa 1.70 3.31 1.68 0.98 0.96 0.98 4.86 0.85
Allium polyrhizum 3.56 2.38 6.03 0.91 0.25 0.28 4.08 0.76
Combined 1.23 1.39 3.27 0.98 0.98 0.96 2.88 0.96

Bare soil
Stipa krylovii 4.60 5.42 8.38 0.96 0.88 0.82 7.55 0.84
Leymus chinesis 1.86 2.42 5.92 0.83 0.96 0.96 5.62 0.94
Cleistogenes squarrosa 3.49 5.83 5.15 0.98 0.97 0.96 9.69 0.99
Allium polyrhizum 6.47 5.03 2.45 −0.38 0.84 0.97 7.84 0.98
Combined 2.37 2.68 4.66 0.96 0.96 0.95 4.33 0.95

RMSE: root mean square error, r: correlation coefficient. Sample number is 9 for Stipa
krylovii, 5 for Leymus chinesis, 5 for Cleistogenes squarrosa, and 3 for Allium polyrhizum.
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reflectance. Note that some papers refer this as the hemispherical–
directional reflectance (e.g., Painter and Dozier, 2004).

Once the reflectance measurements had been completed, the
vegetation within the 0.5×0.5-m quadrat was removed by a clipping
method. In this operation, PV and NPVwere removed carefully so as to
minimize the disturbance to the underlying soil surface.

Then, the spectral reflectance of the soil surface was measured
from a nadir-looking position. In addition, the spectral reflectance of
the vegetation itself was measured by the same spectroradiometer
with the samples removed from the quadrat but with a contact probe
option (Analytical Spectral Devices, Inc.) attached. The observations
were performed from approximately 8:00 to 18:00 local solar time
(LST). A total of 58 effective series of data were obtained in the
intensive observation.

2.3. Bidirectional reflectance function

A BRDF gives reflectance ρ as a function of θv, ϕ and the solar zenith
angle θs, and thus with BRDF determined, it is possible to convert
radiance of any arbitrary measurement geometry of θs, θv, and ϕ at the
time of measurement, into those of the other arbitrarily selected
geometries. There have been many efforts to develop a BDRF model
(e.g., Kimes, 1983; Roujean et al., 1992; Rahman et al., 1993a,b; Susaki
et al., 2004). In this study, Rahman's model was adopted as this model
can be applied to spectral reflectance data collected both from the
field and through remote sensing (Privette et al., 1997; Matsushima
et al., 2005). The BRDF equations are formulated as follows:

ρ θs; θv;ϕð Þ = ρ0
cosθκ−1

s cosθκ−1
v

cosθs + cos θvð Þ1−κ F gð Þ 1 + R½ � ð2Þ

F gð Þ = 1−Θ2

1 + Θ2−2Θ cos π−gð Þ� �1:5 ð3Þ

R =
1−ρ0

1 + tan2θs + tan2 θv−2 tan θs tan θv cos θ
� �1

2

ð4Þ

g = cos θs cos θv + sin θs sin θv cosϕ ð5Þ

where R represents the hot spot effect, which is used to describe the
peak in reflectance that occurs in the retro-reflection direction when
the sun is located directly behind the sensor and shadowing is zero.
Three unknown parameters of Θ, ρ0 and k can be determined through
a least squares regression with a set of observed reflectance data.

2.4. Spectral unmixing model

The main equation for the spectral unmixing model can be written
by Eq. (1). As mentioned, given the values of ρp̅(λ) and three
endmembers ρ ̅i(λ) for at least two different wavelengths, the LCF
value Ci for PV, NPV, and bare soil should be able to be determined from
Eq. (1). In practice, there are 200 possible selections of λ for the present
data set. Thus, the Monte Carlo technique was employed to generate a
large number of combinations by randomly selecting spectra from the
200 reflectance data sets, by following Asner and Lobell (2000). They
performed a sensitivity analysis and identified the minimum optimum
number of combinations of spectra as 50. The same analysis was carried
out with our data set. The results verified their finding. Thus, the LCF
values were determined for 50 selections, and their mean and the
standard deviation were recorded in the analysis.

2.5. Supervised classification method applied to digital camera images

As mentioned, LCF estimates with digital camera images by means of
SCM, an example of more traditional approaches, will be used as a
reference, against which the performance of SUMwill be compared. SCM
is a general classification scheme based on pre-defined classes and
training areas. Thus a user sets up classes within an image and assigns a
training area of each class based on prior knowledge. In this study, SCM
was implemented by the algorithm with the maximum likelihood
technique built within the image processing software (ERDAS IMAGINE
9.1, Leica Geosystems). In the application, first, the 0.5×0.5-m quadrat
part of the image was extracted from the original larger image. Then, the
IHS (intensity, hue, and saturation) transformation was applied for all
extracted images before the SCM application. This was based on the
results of a preliminary analysis to test SCM performance with both RGB
(red, green, and blue) and IHS images. It was found that IHS images
producedmuch better results (not shown here). Third, to distinguish the
LCFs, a training area of each class was created in the extracted image, and
then, three signatures (i.e., homogeneous sample pixels) were generated
from the training areas of each LCF class. Finally, after having obtained
satisfactory discriminationbetween the LCF classes, LCFswere derived for
each image.

3. Results and discussion

3.1. Performance of BRDF

As mentioned earlier, for the application of BRDF conversion,
Eqs. (2)–(5) were fitted to a set of raw reflectance data for each site to
determine the site-specific three parameters of Θ, ρ0, and k. Once
these parameters are obtained, the conversion is straightforward, and
reflectance at any arbitrarily selected combination of angles of
measurement geometry, ϕ, θs, and θv can be produced. To test the
performance, the BRDF was determined for each of the 58 sites; then,
the converted spectral reflectance data were reproduced for the 12
combinations of ϕ (0, 90, 180, and 270°) and θv (30, 50, and 70°) for
each site. These were compared with those measured raw reflectance
at the selected same angles of ϕ and θv. The total of 693 data points
produced a good agreement (Fig. 2), with r=0.89, root mean square
error (RMSE) of 0.037, systematic RMSE of 0.019, and unsystematic
RMSE of 0.018 (Willmott, 1982). Thus, in general, the BRDF in the
form of Eqs. (2)–(5) is capable of reflectance conversion for a range of
measurement geometry. Note that the measured surface reflectance
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in this study is not exactly the bidirectional reflectance, since the
incoming radiation measured through white reflectance panel is the
hemispherical radiation composed of diffuse and direct components.
The success of BRDF application probably indicates that the majority
of the radiation is the direct component, and the diffuse part is of
lesser importance. Three outlier points can also be noted in Fig. 2. They
are all for one particular site (KBU11) and for one particular view
angle of ϕ=180°. A closer look at the vegetation information
(Table 1) and the reflectance data has shown that it was probably
caused by much denser and taller vegetation of this site. When
vegetation height increases, the amount of shadow tends to increase
within the sensor view, and it looks differently depending on how
sensor is aimed at the target. Moreover, when ϕ=180° and the sensor
aims directly in the direction of the sun, it is most susceptible to the
effect of forward scattering (Kimes, 1983). This effect is more
Fig. 4. Comparison of estimated and actual LCFs for Stipa krylovii. Panels a), b), and c) repr
θs=45°, and θs=60°, respectively, whereas other angles are fixed at ϕ=0° and θv=50°. S
pronounced for taller and denser vegetation cover. Thus, it is probably
safe to avoid ϕ at approximately 180° particularly for a site with tall
vegetation.

3.2. Derivation of LCFs from SUM with BRDF

3.2.1. Sample and reflectance type selections
To apply SUM, first, it is necessary to decide what parts of

wavelength and what type of spectra should be used. Asner and Lobell
(2000) noted that spectral reflectance of PV, NPV, and soil varied little
within the wavelength of 2100–2400 nm in the SWIR (short-wave
infrared) region and used the reflectancewithin this wavelength region
to apply the SUM approach. A preliminary examination of the spectral
data sets obtained in this study confirmed their assessment. Therefore,
the same spectral region of 2000–2400 nm was used. Asner and Lobell
esent the results showing the effect of adopting different solar zenith angles θs=30°,
ymbols represent the mean, and the bars represent the standard deviation.
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(2000) also examined possibilities to use three types of spectral data,
namely, the raw reflectance ρ(λ), the derivative reflectance dρ(λ)/dλ,
and the tied reflectance ρ(λ)–ρ0 in which ρ0 is called the tied point.
Examples of these tree types of reflectance for PV, NPV, and bare soil
within the SWIR region are plotted in Fig. 3. Among these three, Asner
and Lobell (2000) recommend the use of the tied spectra based on the
sensitivity test to the noise. Their noise propagation analysis was also
repeated here with the current data sets, with ρ0=2075 nm selected.
The same results (not shown) were derived—the tied reflectance is the
least sensitive to the noise. Therefore, it was also decided to use the tied
spectra in the followinganalysis, and thus, ρ̅p(λ) andendmembersρp̅(λ)
in Eq. (1) should now represent the mean tied spectra within the
sensor's view and the tied reflectance of the i-th land cover component,
respectively, both at wavelength λ.
Fig. 5. Comparison of estimated and actual LCFs for Stipa krylovii. Panels a), b), and c) sho
θv=70°, whereas ϕ=0° and θs=30° are fixed. Symbols represent the mean, and the bars
For the implementation of SUM, specific samples whose reflectance
ρi(λ) (i=1to3) are tobeused asendmembers for PV,NPV, andbare soil
need to be determined. For the NPV, the reflectance of a single NPV
sample, which was arbitrarily selected from all NPV samples, was
adopted based on the observation that the shape and magnitude of
spectra of all NPV samples were very similar. For the bare soil, the
reflectance determined at each site was used as the endmember. The PV
endmember reflectancewas taken from the sample of themost common
species within each experimental area, namely S. krylovii for the semi-
arid area andAlliummongolicum for the arid region. A testwith a different
vegetation selection, that is, with C. duriuscula and Allium polyrhizum as
the sample for the PV endmember reflectance did not change the final
results significantly. Thus, the choice of vegetation species that represent
the spectra of PV and NPV is probably irrelevant in the estimates of LCFs.
w the effect of using different sensor off-nadir viewing angles θv=30°, θv=50°, and
represent the standard deviation.

image of Fig.�5


Table 3
Statistics for the comparison between estimated LCFs from SUM with BRDF for three
values of θv and visually determined LCFs.

Vegetation species RMSE r

θv 30° 50° 70° 30° 50° 70°

Photosynthetic vegetation (PV)
Stipa krylovii 4.83 3.18 3.73 0.86 0.94 0.93
Leymus chinesis 6.24 4.60 4.36 0.95 0.98 0.99
Cleistogenes squarrosa 5.27 4.66 5.72 0.97 0.99 0.96
Allium polyrhizum 6.23 3.27 4.47 0.37 0.99 0.95
Combined 3.25 2.17 2.38 0.94 0.97 0.96

Nonphotosynthetic vegetation (NPV)
Stipa krylovii 4.37 2.46 3.83 0.97 0.98 0.98
Leymus chinesis 2.49 3.38 2.90 0.76 0.80 0.96
Cleistogenes squarrosa 3.08 4.40 3.68 1.00 0.99 0.99
Allium polyrhizum 3.37 3.11 4.65 0.94 0.50 −0.14
Combined 2.23 1.81 2.35 0.98 0.99 0.98

Bare soil
Stipa krylovii 2.64 4.39 5.18 0.92 0.97 0.87
Leymus chinesis 6.37 7.61 2.39 0.94 0.97 0.99
Cleistogenes squarrosa 6.38 4.18 5.14 0.98 0.98 0.93
Allium polyrhizum 6.49 5.49 7.09 0.13 0.99 0.40
Combined 2.20 2.09 2.80 0.95 0.97 0.96
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This is probably because all observations were carried out in a relatively
short period in summer, and the spectral characteristics of vegetation
remain quite similar, regardless of species. If observations had spanned
over different seasons or plant life-cycle stages, the results could have
been more sensitive to the choice of PV and NPV endmembers.

3.2.2. Impact of measurement geometry
With the tied spectra in the SWIR region, first, the effects of the

solar zenith angles on the determination of LCFs by means of SUM
were examined. For this analysis, first, a data set of the bidirectional
reflectance observed over the same vegetation species but at multiple
locations and at different solar zenith angles were selected. This data
set allowed BRDFs Eqs. (2)–(5) to be specified for the particular
vegetation. Among the observations, those measured over the four
species of S. krylovii (at 9 sites), L. chinensis (5 sites), C. squarrosa
(5 sites), and A. polyrhizum (3 sites) fall in this category (see Table 1)
and were subjected to the analysis. This approach is acceptable
because the variation of the parameters, Θ, ρ0, and k determined
above for each site was found small in the study areas.

Thebidirectional reflectance datawere then generatedwith BRDF for
ϕ=0° and θv=50°, whereas θs was selected from among 30°, 45°, and
60°, which cover the range of most θs values encountered in the field
measurements. These were then converted into the tied spectra and
used as inputs to the SUM approach to determine LCFs. The results were
compared with visually determined LCFs, and the statistics of compar-
ison are summarized in Table 2. Note that three LCF values are not
independent and an increase of one LCF value will result in the decrease
of others. Thus the comparisonwasmade separately and independently
for each LCF of PV, NPV and bare soil. An example of the comparisons is
shown in Fig. 4(a)–(c) for the case of S. krylovii. It can be seen that the
agreement tends to get worse for larger θs, with larger RMSE values and
smaller correlation coefficient. For PV and bare soil, the best agreement
was for θs=30°, whereas for NPV, θs=45° may be a better choice,
although the difference is relatively small. In fact, a statistical test with
Z score and F value (Motulsky and Ransnas, 1987) has indicated that the
differences of r and RMSE for θs=30° and θs=45° were found not
significant at both 0.01 and0.05 levels. Thus, probably the effect of θs can
be considered small for 30°≤θs≤45°, and θs=30° is a reasonable choice.

Next, the influence of θv for the LCF determination by means of
SUM was investigated. In general, over the homogeneous surfaces,
bidirectional reflectance increases with an increase of the off-nadir
sensor view angle (Kimes, 1983). To test this effect, the same analysis
applied above for θs was also carried out for θv; thus, θv was selected
from among 30°, 50°, and 70°, whereas ϕ=0° and θs=30° were fixed
in the application of SUM with BRDF. The resulting LCFs were
comparedwith visually determined values in Fig. 5(a)–(c) for the case
of S. krylovii. The statistics of the comparison for all cases are listed in
Table 3. The best agreement was found for θv=50°, but the difference
is small, except perhaps for the case of θv=30°. A statistical test has
shown that the differences of r and RMSE are not significant for
θv=30°, 50°, and 70° at both 0.01 and 0.05 levels. Thus, except
perhaps for smaller θv values, LCF determination is not very sensitive
to this angle selection. This can be explained by the fact that the effect
of roughness becomes smaller, and the target can be treated as
homogeneous for larger θv (Kimes, 1983). In the following analysis,
the standard condition in the application of SUM was selected as
ϕ=0°, θs=30°, and θv=50°.

The reflectance obtained at different geometric view was con-
verted to the above condition by means of BRDF before the SUM
application. Fig. 6 shows the comparison of LCF values derived by
means of SUM with spectra all converted for this standard condition
by the BRDF function optimized for each site and those visually
determined in the field for all 58 sites listed in Table 1. Also shown in
Fig. 7 are the same comparison, but LCF estimates were obtained by
SUM with the spectra data measured at ϕ=0° and θv=50° without
application of BRDF angles conversion. In this case, θs is different
among the points shown. The statistical analyses of the comparison
are given in Table 4.

Several features can be noted. First, the difference in the agreement
between the semi-arid and arid samples seems small, and thus, SUM is
equally applicable to the surfaces in both regions in Mongolian steppe.
Second, the LCF of the soil surface is not necessarily estimated more
accurately than that of the others, although it is a simpler surface and of
more uniform condition. This might have been caused by the
disturbance of soil surface by the removal of the plant part as previously
described. Even after such careful procedure, it is sometimes difficult to
remove all smaller pieces of vegetation within the quadrat without
causing damages to the soil surface. Third, the use of BRDF togetherwith
SUM tends to improve the accuracy of the LCF estimation. However, the
difference is relatively small and is judged not significant by a statistical
test with Z score and F value. This is not unexpected as the above results
on the impact of measurement geometry have indicated that LCF
estimations are not very sensitive to the geometry. Thus,measurements
can be made over a less restricted condition than that adopted in the
past. It is also interesting to note that the agreements obtained from the
reflectancewithout theangle conversionbyBRDFare approximately the
same level as those obtained by Asner and Lobell (2000), whose results
were obtained from the reflectance measured only within 1 h of local
noon on clear day. One clear advantage of the SUM application with
spectral reflectance data without BRDF conversion is that it does not
require spectral reflectance measurements from multiple angles of ϕ
and θv. This is attractive because most reflectance data measured from
anaircraft orpossibly froma satellite are likely to beobtained for a single
set of ϕ, θs, and θv. On the other hand, the determination of BRDF has an
extra benefit of obtaining additional information about the surface. This
can be used for various purposes such as for the validation and test of a
radiative transfer model, estimation of radiation flux parameters,
improved estimation of leaf area index, NDVI, and leaf inclination
angles and distribution parameter, among others (e.g., Matsushima
et al., 2005; Cui et al., 2009). Thus, it is still a good idea to adopt this
strategy whenever it is feasible.

Finally, a comparison between the classified LCF values by means of
SCM approach and those values visually determined is presented in
Fig. 8 andTable 5, as a reference to the comparisonspresented in Figs. 6–
7. Clearly, SUM produces LCF estimates with better accuracy than the
more traditional SCMapproachwithdigital camera images.One also can
note that among the results of SCM, LCF estimates for the bare soil show
a larger scatter and contribute to the overall worse performance of SCM.



Fig. 6. Comparison of estimated and actual LCFs. The reflectance data set reproduced by BRDF for the standard condition of ϕ=0°, θs=30°, and θv=50°. The left columns a), b), and
c) represent the results for semi-arid area, and the right columns d), e), and f) represent those for arid area.
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The reason for this was further investigated by comparing the two
examples of the SCM classification procedure (Fig. 9). When the
classified images in panels (c) and (f) are compared with the original
digital images in panels (a) and (d), it is clear that the bare soil and
shadow cannot be distinguished from each other by the SCM; thus,
together, they tend to occupy a larger percentage within the image.
Attempts weremade to classify the image into four elements—PV, NPV,
bare soil, and shadows—withoutmuch success. One easy remedywould
be to obtain imageswithout any shadows; thismay be accomplished by
making measurements under complete cloudy skies without strong
direct sunshine. However, it is possible that such images have weaker
contrast among PC, NPV, and bare soil, and it is also not clear if this will
not cause deterioration in the accuracy in LCF estimation. More studies
will be needed in this aspect.
4. Conclusions

Hyperspectral data sets were obtained during intensive observa-
tions in the summer of 2005 and 2006 in semi-arid and arid steppe
regions in Mongolia and were used in this study to test the
applicability of the spectral unmixing model (SUM) to estimate land
cover fractions (LCFs). The analysis has verified the results of earlier
studies of Asner and Lobell (2000) and Asner and Heidebrecht (2002)
for the American ecosystems that SUM is capable of producing LCFs
in good accuracy, that the tied reflectance in the wavelength of 2000–
2400 nm is most suitable for SUM, and that minimum of 50
combinations of wavelength selected at random by the Monte Carlo
analysis are sufficient to produce LCF estimates. The accuracy of LCFs
was highlighted by comparing the results from a more traditional
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Fig. 7. Comparison of estimated and actual LCFs. The raw reflectance data set for ϕ=0°, θv=50°, and variable θs. The left columns a), b), and c) represent the results for semi-arid
area, and the right columns d), e), and f) represent those for arid area.

Table 4
Statistics for the comparison between LCFs from SUM approach and those visually
determined. For SUM, both raw reflectance data and converted data to the standard
condition by means of BRDF were used.

Land cover type RMSE r

BRDF Raw BRDF Raw

Semi-arid area
Photosynthetic vegetation 4.28 5.73 0.98 0.95
Nonphotosynthetic vegetation 3.49 3.33 0.98 0.98
Bare soil 5.72 5.74 0.97 0.96

Arid area
Photosynthetic vegetation 2.96 4.25 0.99 0.98
Nonphotosynthetic vegetation 2.09 2.12 0.52 0.25
Bare soil 3.43 4.35 0.99 0.98
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method of supervised classification method (SCM) applied to the
digital camera images. Thus, SUMwith hyperspectral images seems to
be applicable to a rather wide range of surface conditions that could
be encountered in dry regions in American continents and also in
Asian steppe regions. This is promising for remote sensing application
from an aircraft or from a satellite.

In addition, the effect of measurement geometry represented by
the solar zenith angle θs, the sensor view zenith angle θv, and the
sensor azimuth angle ϕ to the LCF estimation was investigated. The
bidirectional distribution function (BRDF) was first fitted to each data
set to derive spectra at arbitrarily selected measurement geometry for
use as inputs to SUM. Our results have shown that the LCF estimation
is not very sensitive to these angles except perhaps for larger θs value
and for smaller θv range. Among the acceptable range of angles, a
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Fig. 8. Comparison of classified LCFs values and those determined visually. Both results
for semi-arid and arid areas are shown. The solid line represents y=x.

Table 5
Statistics for the comparison between LCFs from SCM technique applied to HIS images
and those visually determined.

Land cover type RMSE r

Semi-arid area
Photosynthetic vegetation 9.02 0.87
Nonphotosynthetic vegetation 7.31 0.96
Bare soil 8.75 0.92

Arid area
Photosynthetic vegetation 17.73 0.89
Nonphotosynthetic vegetation 6.43 0.42
Bare soil 19.25 0.85
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better result was obtained for θs=30°, θv=50°, and ϕ=0°. Thus,
measurements can be carried out over a larger portion of the daylight
hours than those in the past. It also implies that the data obtained by
remote sensing technology from various platforms at wide range of
measurement geometry could also be useful to derive consistent LCFs
by means of SUM approach.

As a final note, it should be pointed out that LCFs in the present
analysis represent covers as viewed from above. Thus those hidden
under the top-canopy are not accounted for. Although this is in
accordance with general definition of the cover fractions, estimates
of the layer-by-layer fractions may be necessary for a more complex
canopy with multi-layer structure than the simple canopy present in
the study areas. Clearly this is not possible with the approaches
treated in the present study.
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Fig. 9. Examples of LCF classification by means of SCM approach. The left columns a), b), and c) represent results for KBU1 site in semi-arid area, and the right columns d), e), and
f) represent those for the MNG1 in arid region. The top side panels (a) and (d) show the original digital camera images, panels (b) and (e) are transformed IHS images, and panels
(c) and (f) show the SCM classified images.
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