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Summary

1. Expert opinion is often relied on to build ecological models when empirical data are absent.

Despite widespread use, expert models often ignore uncertainty though it may affect predictions.

We assess the importance of such uncertainty for modelling forest restoration.

2. Of an initial 19 experts found using a literature search and peer recommendations, five parame-

terized models predicting ecological responses to proposed restoration actions for a degraded dry

woodland system in Victoria, Australia. We incorporated uncertainty from three sources: disagree-

ment (between-expert uncertainty), self-assessed imprecision (within-expert uncertainty) and mod-

elled system stochasticity. These sources of uncertainty were quantified as variance components in

hierarchical models.

3. The between-expert variance component contributed more to overall model uncertainty than

both within-expert variance and modelled system stochasticity. The estimate of between-expert

variance also had the greatest parameter uncertainty of the three components.

4. Synthesis and applications. We present a method to decompose variance in model predictions.

We suggest that modelling strategies relying on a single expert opinion, consensus between experts,

or that only incorporate uncertainty due to system stochasticity could produce biased models and

over-confident predictions. Management decisions based on biased and over-confident predictions

lead to inefficient conservation investments and poor outcomes. Our research highlights the

importance of seeking multiple expert opinions to fully characterize uncertainty and make robust

decisions.

Key-words: expert opinion, forest management, hierarchical model, state-and-transition,

uncertainty, variance components analyses, vegetation dynamics development tool

Introduction

Expert opinion has often been used to parameterize ecological

models when other data are scarce or unavailable (e.g. Johnson

& Gillingham 2004; Forbis et al. 2006; O’Neill et al. 2008).

Empirical data may be limited because complex ecosystem

interactions are difficult to measure (Ferguson et al. 2008), or

because data collection is limited by time and money (Johnson

&Gillingham 2004; Murray et al. 2009). While expert opinion

is not equivalent to empirical data (Pearce et al. 2001), some-

times it may be the only information available to construct

models and informmanagement decisions (Johnson&Gilling-

ham 2004; O’Neill et al. 2008). Expert opinion may also add

value to existing data within Bayesian modelling and decision

frameworks (McCarthy 2007).

Failing to account for model uncertainty can lead to ineffec-

tive management (Johnson & Gillingham 2004; Buckley et al.

2005). In expert-opinion models, predictive uncertainty arises

from multiple sources (Regan, Colyvan & Burgman 2002).

The relative magnitude of these various forms of uncertainty

can affect the strategy of model formulation and decisions

based on those models. Yet, these sources of uncertainty and

their relative magnitudes have to date provoked little discus-

sion. In this article, we describe an approach to estimating the

variance components of vegetation dynamics model predic-

tions.

We consider three components that cause predictive uncer-

tainty: system stochasticity, between-expert uncertainty and

within-expert uncertainty. System stochasticity arises because

complex biological processes, such as disturbances, vary ran-

domly in time (e.g. Raulier, Pothier & Bernier 2003; Kangas &

Kangas 2004) and space (e.g. McCarthy & Burgman 1995).

Uncertainty due to natural stochasticity is commonly incorpo-

rated into ecological models by repeatedly sampling from

distributions for each model parameter, using Monte

Carlo simulations and related approaches (e.g. McCarthy &*Correspondence author. E-mail: c.czembor@gmail.com
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Burgman 1995; Buckley et al. 2005; Nicholson & Possingham

2007).

Within-expert uncertainty occurs when an expert is unsure

of a parameter value; this is sometimes known as imperfect

knowledge. The degree of confidence an expert has in their esti-

mate can be characterized with the use of credible intervals,

imprecise probabilities, p-bounds or other bounding methods

(Ferson 1996; Walley 2000; McCarthy 2007; Speirs-Bridge

et al. 2010). Often only a point estimate is used for parameters,

rather than a distribution or range. Point estimates do not

account for the imperfect knowledge of experts and decisions

relying on predictions from such models are not robust to

within-expert uncertainty (Ben-Haim 2001). There are few

studies that have addressed within-expert uncertainty (e.g.

Alho, Kangas &Kolehmainen 1996;Walker, Evans &MacIn-

tosh 2001) and techniques for eliciting uncertainty intervals for

expert parameter estimates are rarely applied in ecology and

conservation (but see Speirs-Bridge et al. 2010). We approach

this problem by conducting a bounded sensitivity analysis to

test the importance of within-expert uncertainty.

Between-expert uncertainty occurs because of disagreement

among experts. Disagreement can reflect spatial heterogeneity

in processes (Martin et al. 2005), a dearth of knowledge

about processes (Morgan, Pitelka & Shevliakova 2001), or

cognitive biases (Burgman 2005). Like within-expert uncer-

tainty, between-expert uncertainty is also only rarely

addressed or quantified in expert-opinion-based modelling

(known examples are Alho, Kangas & Kolehmainen 1996;

Czembor & Vesk 2009; Hurley, Rapaport & Johnson 2009;

Johnson & Gillingham 2004; O’Neill et al. 2008). Commonly,

between-expert uncertainty is avoided entirely by consulting

only one expert (Sutherland 2006; O’Neill et al. 2008) or forc-

ing expert groups to reach consensus (Morgan, Pitelka &

Shevliakova 2001; Irvine et al. 2009) prior to parameteriza-

tion or after using mathematical averaging, Delphi methods,

or other approaches (e.g. Kangas et al. 1998; Leskinen &

Kangas 2001; Sutherland 2006; Murray et al. 2009). Consen-

sus methods produce parameters with only single values (e.g.

Forbis et al. 2006; Vavra, Hemstrom & Wisdom 2007). Esti-

mates made from forced consensus can be susceptible to

over-confidence (Cooke 1991) because some participants

dominate the group or participants submit to the opinion of

the majority (Clemen & Winkler 1999; Burgman 2005; Suth-

erland 2006).

When multiple experts construct models of ecosystem

dynamics in isolation, there can be large differences in the pre-

dictions of the different expert models (Czembor & Vesk

2009). If we consider each expert model to be equally plausible,

it is difficult to make management decisions based on diverse

model predictions (Czembor & Vesk 2009). The difficulty is

compounded when we consider within-expert uncertainty and

system stochasticity. Currently, little is known about the rela-

tive contributions of system stochasticity, within- and

between-expert uncertainty to overall model uncertainty (but

see Alho, Kangas & Kolehmainen 1996); such information is

necessary for determining the robustness of predictive models

used to inform restoration decisions.

Here, we present an approach to quantifying the compo-

nents of uncertainty that cause variation in expert model pre-

dictions for use in decision-making. We illustrate our

approach using a state-and-transition modelling framework to

predict the dynamics and restoration trajectory of overstorey

Eucalyptus vegetation in a dry woodland ecosystem of Victo-

ria, Australia. We use information elicited from a small

number of experts in a field that has relatively few experts

and almost no relevant data for the restoration decisions at

hand.

Materials and methods

CASE STUDY: THE RESTORATION OF DRY WOODLANDS

IN VICTORIA , AUSTRALIA .

We focus on a heavily degraded ecosystem in Victoria, Australia, the

Box-Ironbark forests and dry woodlands, which consist primarily of

ironbark (Eucalyptus tricarpa) and box (E. microcarpa, E. polyanthe-

mos, E. melliodora) eucalypts. These woodlands have been harvested

for timber since the 1830s (Forests Commission of Victoria 1928;

Newman 1961; Kellas 1991). Long-term harvesting has changed them

from open woodlands with heterogeneous stand structure and many

large – 120 to 150 cm d.b.h. – hollow-bearing trees (Newman 1961;

Kellas 1991) to woodlands without large, hollow-bearing trees and

relatively homogeneous structure dominated by dense stands of small

coppice stems (Environment Conservation Council 2001). Loss of

area and change in vegetation structure, including the absence of hol-

lows required by many fauna species (Kellas 1991; Alexander 1997;

Soderquist 1999), have contributed to severe population declines,

extirpations and extinctions of over 350 species (Muir, Edwards &

Dickens 1995; Alexander 1997; Environment Conservation Council

2001).

Management authorities recently initiated three strategies to

restore Box-Ironbark stand structure to more closely resemble pre-

harvesting conditions: new ecological thinning prescriptions, modi-

fied timber harvesting regulations, and stand development without

harvesting. Ecological thinning reduces stem density to a level similar

to an older stand. The aim of thinning is to promote increased growth

rates of remaining trees and accelerate the development of large trees

(Environment Conservation Council 2001). Modified harvesting reg-

ulations stipulate that hollow-bearing and large trees, >60 cmDBH,

are not harvested and that higher densities of medium-sized trees are

left for recruitment to larger-size classes (Department of Natural

Resources and Environment 1998; Sutton 2000). Stand development

without harvesting constitutes ceasing all harvesting but allowing fire

management.

Management authorities recognized that direct evidence for an

effect of different strategies would take many years to eventuate due

to the slow growth of trees. To compensate for a lack of field data an

expert elicited model was built; this is described in detail by Czembor

& Vesk (2009). The present study complements this real-world exam-

ple of forest restoration and illustrates how to quantify the different

sources of variance inmodel predictions.

SELECTING EXPERTS

A lack of existing field data necessitated the use of expert opinion to

derivemodel parameters.We defined an expert as someone with:

1. Aminimum of 5 years of education, research experience or techni-

cal training in Box-Ironbark vegetation dynamics.
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2. Very high or high (self-assessed) levels of theoretical and ⁄ or practi-
cal experience working in Box-Ironbark woodlands.

3. Published research on Box-Ironbark dynamics or management in

peer-reviewed journals or government agency-endorsed reports.

4. Peer nomination of being an expert.

We located candidate experts by consulting the park management

authority’s steering committee for Box-Ironbark restoration and

conducting a literature search for all published articles on Box-Iron-

bark woodlands. We contacted all identified candidates to ask for

recommendations of other people who might be eligible to partici-

pate. This resulted in a total of 48 candidates, 19 of which passed

our expert selection guidelines (wildlife biologists, social scientists

and non-local or inexperienced candidates were removed at this

stage). We were able to contact 14 of these experts, of whom nine

agreed to participate. Those unable to participate cited a lack of time

as the primary reason they were unavailable. We sent electronic

surveys to these experts; eight of which were returned. We conducted

personal interviews with these eight experts and could construct

models for five. Models were not constructed when experts could not

provide the full suite of parameters required to generate a simulation

model.

MODELL ING VEGETATION DYNAMICS

State-and-transition simulation models (STSMs) are used to charac-

terize vegetation dynamics. An STSM defines a set of discrete vegeta-

tion states and associated transition agents such as vegetation

growth, natural disturbances or management actions (Westoby,

Walker & Noy-Meir 1989). An algorithm applies the transition

agents, which have associated probabilities of occurring, to non-spa-

tial vegetation units, or cells, iteratively over a series of timesteps and,

according to these probabilities, the cells change from one state to

another.

Here, we used a computer software implementation of STSMs, the

vegetation dynamics development tool (VDDT; ESSA Technologies

Ltd 2007), to predict the long-term vegetation dynamics of Victorian

Box-Ironbark woodlands. The models were parameterized using the

information elicited from five experts. The electronic survey

results were used to determine the four vegetation states included in

the VDDT models: high-density regrowth, low-density regrowth,

high-density mature and low-density mature (Fig. 1). In subsequent

interviews, experts assisted in estimating the initial conditions of the

models and specified how each transition agent (Table 1) would alter

vegetation states. A detailed list of transition agent probabilities for

each model is available in Appendix S1 (Supporting information)

and a comprehensive description of the models used can be found in

Czembor &Vesk (2009). A brief outline is given here.

The models simulated the dynamics of 1000 independent cells.

Models began with a set of initial conditions that dictated the propor-

tion of cells in each vegetation state. These conditions reflected the

probable current state of real-world Box-Ironbark woodlands and

were generated by averaging estimates provided by experts during

interviews.We used the average of all expert estimates rather than dif-

ferent initial condition estimates for each expert’s model to allow

model predictions to be compared through time. Experts agreed that

current stands typically have high densities of small stems and lack

large trees, meaning the current woodlands are on average 71Æ2%
high-density regrowth, while the remaining proportions are 10Æ3%
low-density regrowth, 12Æ5% high-density mature and 6% low-den-

sity mature. We also considered two other sets of initial conditions

that reflected potential historical conditions, but previous analyses

indicated that initial conditions have relatively little effect on long-

term model predictions (Czembor 2009) and will not be pursued

further here.

Each cell was randomly assigned an initial age sampled from a uni-

form distribution. Each expert defined the minimum and maximum

ages so that the models reflected the multi-age structure of Box-Iron-

bark stands. Here, age is defined as the number of timesteps (years) a

cell has been in its current state. Cell age is important for the VDDT

models as some transitions can only occur within specific age ranges.

To model the alternative management strategies, we asked experts

to determine the effects of each management strategy on vegetation

states. Cells in each model were apportioned equally between man-

agement strategies. The VDDTmodel output includes the proportion

of the simulated landscape in each of four vegetation states. However,

managers are interested in maximising the amount of Box-Ironbark

woodland that is considered ‘low-density woodland’ because this veg-

etation state is believed to provide high-quality habitat for many

fauna species. Therefore, we only use the proportion of cells in low-

density woodland for the current analyses. We ran each model for

150 timesteps because preliminary analyses showed most models

stabilized after approximately 100 years.
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Fig. 1. The four vegetation states used in state-and-transition simula-

tion models defined by the density and size of Eucalyptus trees.

Arrows describe some of the common transition agents and how they

affect the vegetation states.

Table 1. Transition agents for vegetation states and their associated

management scenarios

Transition agent

Natural

disturbance

Current

harvesting

Ecological

thinning

Growth 3 3 3

Coppice response 3 3 3

Dodder laurel 3 3 3

Drought 3 3 3

Drought + mistletoe 3 3 3

Insect attack 3 3 3

Wildfire 3 3 3

Wind-throw 3 3 3

Wind-throw + wildfire 3 3 3

General timber harvesting – 3 –

Firewood harvesting – 3 –

Sawlog harvesting – 3 –

Ecological thinning – – 3

Ecological thinning + poison – – 3

Fuel reduction burn – 3 3
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INCORPORATING UNCERTAINTY

Vegetation dynamics development tool (VDDT) models mimic sys-

tem stochasticity by varying the order that transitions occur overmul-

tiple Monte Carlo simulations. The list of possible transition agents

with their corresponding probabilities is specified according to a cell’s

current vegetation state and age. At one timestep, for a given Monte

Carlo simulation, VDDT randomizes the list of possible transition

agents and arrays their probabilities consecutively, such that each

probability covers a distinct interval. VDDT then sums the probabili-

ties of the possible transition agents and draws a random number

from a uniform distribution between zero and one. If the number

drawn is greater than the summed probabilities of transition agents

possible in that state, then no transition occurs. If the draw is less than

the summed probabilities, then the transition agent whose distinct

probability interval corresponds to the random number is selected

and a transition occurs, changing the cell to the appropriate state

(ESSA Technologies Ltd 2007). Cell ages may also be adjusted after

some transitions. This process is repeated for every cell and iterated

over each timestep for the specified number of Monte Carlo simula-

tions; we relied on 100 simulations. With this process, no more than

one transition agentmay be selected for a cell at one timestep and var-

iability in the rates of disturbances is not incorporated.

To incorporate between-expert uncertainty, each of the five experts

independently provided their own parameter estimates for each tran-

sition and specified how each transition agent would affect vegetation

change.

To account for within-expert uncertainty, 25 replicate model

parameterizations – called projects – were generated for each expert.

A complete set of transition agent parameters for each project was

randomly drawn from beta distributions that summarized the uncer-

tainty in the estimates for each transition probability (Vose 1996;

Burgman 2005). Though we assumed that uncertainty would follow a

beta distribution, the experts themselves did not directly provide these

probability densities. People are often comfortable providing a best

guess and extreme values (Burgman 2005) that can later be converted

to probability distributions (Regan, Colyvan & Burgman 2002; Dor-

azio & Johnson 2003). Therefore, the experts provided all transition

probabilities in the form of three-point parameter estimates, where

the upper and lower values represented the plausible bounds and the

middle values represented an estimate of themean (Morgan&Henrion

1990a; Stainforth et al. 2005). However, we found fitting beta distri-

butions to all three values was often computationally difficult: the

upper estimates on some experts’ models were orders of magnitude

larger than the middle estimate and, when used to generate beta dis-

tributions, resulted in non-real numbers using our algorithm. As a

compromise, we calculated the variance of the distributions using

normal bounds of the middle and lower estimates:

r2 ¼ l� l

z

� �2

; eqn 1

where, r2 is the variance, l is the middle estimate, l is the lower

estimate, and z is a z-value derived from a normal distribution

depending on the nominal (subjective) probability that the true

parameter lies between the prescribed limits.

When calculating the variance, we used a z-value assuming that the

prescribed limits provided by experts represented 90% confidence

bounds. To test for sensitivity to this assumption, we repeated the

analyses assuming 80% and 95% confidence bounds. The sensitivity

to these assumptions was of interest because there is substantial

evidence in the literature to suggest that experts commonly over-

estimate the probability that the true value lies within the intervals

they provide (e.g. Teigen& Jørgensen 2005). Shape parameters (a and
b) for the beta distributions were calculated using the mean, l, and
the variance imputed for a given confidence level, r2, for each param-

eter (McCarthy 2007):

a ¼ l
l 1� lð Þ

r2
� 1

� �

b ¼ 1� lð Þ l
1� lð Þ
r2

� 1

� �
:

eqn 2

We completed one trial where 100 replicate model parameteriza-

tions were constructed for each expert using the 90% confidence level.

We visually inspected probability density functions showing the pro-

portion of cells in low-density mature for 100 replicates vs. 25 repli-

cates and found that the distributions were virtually identical.

Because the time required to construct and simulate replicates was

extremely onerous, only 25 replicates were constructed for each

expert.

VARIANCE COMPONENTS ANALYSIS

The VDDT model predictions for the proportion of cells in the low-

density mature state were logit transformed for data analysis that

required normally distributed data. We completed data analyses on

VDDT model predictions using R version 2.6.2 (R Development

Core Team 2008). Variance components analyses (VCAs) were used

to quantify the amount of the total variance that could be explained

by a particular part of the model error structure (Alho, Kangas &

Kolehmainen 1996; Quinn & Keough 2002). Here, we used linear

mixed-effect models in a maximum likelihood framework (Faraway

2006; Gelman & Hill 2007; Baayen 2008) to determine the relative

contribution to the variation in the proportion of cells in the desired

vegetation state, low-density mature, of the three sources of uncer-

tainty. The R packages nlme (Pinheiro et al. 2008) and lme4 (Bates

2008) were used to fit the linearmixed-effect models:

Areai ¼ b � initi þ gexptj½i� þ gprojjk½i� þ gsims
i ; for i ¼ 1; . . . ;n

gexptj � N 0;r2
expt

� �
; for j ¼ 1; . . . ; 5

gprojjk � N 0;r2
proj

� �
; for j ¼ 1; . . . ; 5; k ¼ 1; . . . ; 25

gsims
i � N 0;r2

sims

� 	
; for i ¼ 1; . . . ;n

eqn 3

Here, Areai is the logit transformed proportion of cells in low-density

mature for the ith simulation, where n = 37 500 simulations. The

term b is a coefficient vector, length three, which combined with a 3

by nmatrix of binary values initi, indicating which of the initial condi-

tions the simulation began with, forms the fixed part of the model.

The random part of the model is made up of three sets of error terms,

gj
expt, gjk

proj and gi
sims. The parameter gj

expt consists of J = 5 terms

while gjk
proj consists of K = 25 projects nested within j. The term

gi
sims is the overall model residuals due to variation between replicate

simulations of eachmodel parameterization. Each set of estimates for

the error terms are normally distributed, centred on zero, with corre-

sponding variances r2expt, r
2
proj and r2sims.

We fit variance components models at timesteps between and

including 10 and 150 years at 10-yearly intervals. To test for sensitiv-

ity to the assumption that within-expert uncertainty was described by

90% confidence bounds, all 15 different timestep models were also fit

assuming 80%and 95% confidence bounds.

Posterior probability densities for each of the variance components

parameters were estimated with Markov Chain Monte Carlo

(MCMC) methods, using a Gibbs Sampler implemented in the R
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package coda (Plummer et al. 2008). The posterior density distribu-

tions describe the uncertainty in estimatedmagnitudes of the variance

components. MCMC analyses were performed for the 150-year

model. The samplers were run for 110 000 iterations. Convergence

was assessed using the potential scale reduction factor based on three

chains and a 10 000 iteration burn-in (Gelman et al. 2000). Posterior

density distributions from one of the three chains were used to deter-

mine the uncertainty in variance parameter estimates. MCMC analy-

ses were repeated for each of the three confidence bound levels

separately.

Results

MODEL PREDICT ION

Most expert models predicted a slight increase from the initial

6%of the landscape in the low-densitymature to an average of

7Æ5–11Æ9% after 150 years (Fig. 2; Experts 3, 4 and 5). There

was large variation between-expert model parameterizations,

whichwas highly influenced by Expert 2 and, to a lesser degree,

Expert 1. Within-expert variation was relatively constant over

timesteps for most expert models. Variation due to system sto-

chasticity differed between-expert models and increased over

time especially for Expert models 1 and 5.

VARIANCE COMPONENTS ESTIMATES

The overall variance in the proportion of low-density mature

cells and the magnitude of each variance component was simi-

lar for each of the three within-expert confidence levels

(Fig. 3). Total variance increased over time, peaked between

80 and 100 years, and then declined slightly as the models

equilibrated near the end of simulations. After equilibrium, the

majority of the overall variance estimate could be explained by

the between-expert component (r2expt = 0Æ73). The variance

due to system stochasticity (r2sims = 0Æ12) accounted for less

than between-expert variance, but was greater than the within-

expert variance component (r2proj = 0Æ02).
The estimate of the between-expert variance was the most

uncertain component according to the posterior density distri-

butions generated by MCMC sampling (Fig. 4a,b). The 95%

Bayesian credible interval for between-expert variance using

the 90% confidence bound was 0Æ261–6Æ013 (Fig. 4a,b), while

the posterior density distribution for within-expert variance

was more certain with a 95% credible interval of 0Æ010–0Æ018
(Fig. 4a,c). The variance due to system stochasticity had the

tightest posterior density (Fig. 4a,d), as the uncertainty around

each variance component reflected their relative sample sizes.

The posterior density distribution for between-expert variance

arises from the estimates of the intercepts for each expert. These

intercepts appear to cluster for three experts (Experts 3–5),

from which the intercepts for Experts 1 and 2 are offset (see

Fig. 2). Interestingly, Experts 1 and 2 self-identified as hav-

ing expertise primarily in ecology, while Experts 3–5 self-

identified as having expertise in natural resource and forest

management. Estimates for all variance components param-

eters were little changed whether expert transition agent esti-

mates represented 80%, 90% or 95% confidence bounds

(Table 2).

Discussion

CHARACTERIZ ING AND DEALING WITH UNCERTAINTY

IN RESTORATION DECIS IONS

Large between-expert variance was observed. This could be

attributed to different professional experience in Box-Ironbark

woodlands, such as seen between academic researchers and

forestry professionals. This variation can be avoided in man-

agement decisions by subsampling similar individuals from the

available pool of experts or by aggregating opinions about res-

toration actions through consensus, as is the norm with forest

management steering committees. Yet, we would suggest that

this could lead to biased predictions and thus potentially unre-

liably decisions.

BETWEEN-EXPERT UNCERTAINTY

Differences between experts

The large between-expert variance component reflects the dis-

agreement about how modes of transitions and their probabil-

ity of occurring affect vegetation states. The estimated
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between-expert variance was less certain than other compo-

nents because it was based on only five experts, while replica-

tion at the other levels of the hierarchical VCA was much

greater. Nonetheless, the lower bound of the 95% credible

interval for the between-expert parameter was greater than the

upper bound of the other two parameters.

Large and uncertain between-expert uncertainty highlights

the importance of allowing experts to provide different opin-

ions. This conflicts with the practice of amajority of previously

implemented expert opinion STSMs. Typically, modellers

using STSMs employ consensus methods to achieve a single

model parameterization (e.g. Hemstrom et al. 2002; McIntosh

et al. 2003; Forbis et al. 2006; Wales, Suring & Hemstrom

2007; Bestelmeyer et al. 2009). Here, our experts provided very

different parameter estimates and we had no a priori reason to

weight the information given by experts.

Differences between experts are common, and can be due to

complex system processes (Kangas et al. 1998). We found that

differences between experts were caused by variation in both

the rates and expected effects of transition agents on vegetation

states (Appendix S1 Supporting information; Czembor &

Vesk 2009). In a similar study using VCA to quantify sources

of model uncertainty, Alho, Kangas & Kolehmainen (1996)

found much variation between experts but, unlike our results,

there was also substantial variance within-experts. Morgan,

Pitelka & Shevliakova (2001) found that experts provided a

diversity of opinions about the effects of climate change on

forests.
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bounds (The 95% confidence interval that

corresponds to a logit transformed variance

of 0Æ73 – between-expert estimate for the (a)

80% confidence bounds at 150 years – spans

proportions from 0Æ03 to 0Æ46).
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Estimating variance

The large magnitude of between-expert uncertainty we esti-

mated may be due to the small number of experts used. Esti-

mating variance using a small sample size can be problematic

because of the inability to estimate population parameters

using few samples. Minimum sample sizes have been set at 30,

50 or anywhere from 4 to 25 times the number of predic-

tors ⁄variables (Green 1991; MacCallum et al. 2001). Often,

the sample size is relatively small in published studies that

rely onBayesian statistics (e.g. 1 inO’Hagan 1998; 8 in Pellikka

et al. 2005; 9 inMurray et al. 2009). Interestingly, many previ-

ous studies that rely on expert opinion do not report the num-

ber of experts consulted (e.g. Alho & Kangas 1997; O’Hagan

1998; Forbis et al. 2006; Ferguson et al. 2008; Bashari, Smith

&Bosch 2009).

We acknowledge that the estimated variance for between-

expert uncertainty is poorly determined as a result of the small

D
en

si
ty

0·0

0·1

0·2

0·3

0·4

0·5

0·6

0·12 1·00 7·50 60·00 400·00

Between-expert variance

0·0

0·5

1·0

1·5

2·0

2·5

3·0

0·008 0·010 0·012 0·015 0·018 0·022

Within-expert variance

0

10

20

30

40

50

0·114 0·116 0·118 0·120

MC/residual variance

Variance (logit transformed on log scale)

0

10

20

30

40

50

60

0·01 0·12 1·00 7·50 60·00 400·00

All variance parameter estimates Between-expert variance
Within-expert variance
System stochasticity

(a)

(b)

(c)

(d)

Fig. 4. Bayesian posterior probability density

functions for (a) all VCA parameters, (b)

between-expert variance, (c) within-expert

variance and (d) system stochasticity.

Results are for the 150-year timestep of the

90% confidence bound project.
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sample size, as illustrated by the wide 95% Bayesian credible

intervals for this parameter. Increasing the number of experts

may reduce between-expert uncertainty and increase our confi-

dence in the parameter estimate if additional experts agreed,

thus reducing the influence of outlier experts (Kangas et al.

1998). Methods have also been formulated to combine diver-

gent expert models using Bayesian priors (e.g. McCarthy &

Masters 2005;McAllister, Stanley& Starr 2010).

Due to problems estimating variance with small samples

sizes, we do not endorse a sample size of five as a minimum

number of experts for all forest restoration case studies.Unfor-

tunately, as we exhausted the limited pool of available experts,

we have no evidence to illustrate the minimum number of

experts, and can only speculate about the effects of increasing

the sample size in this case study. We believe that it will often

be the case in real restoration examples that information is lim-

ited to few empirical data and ⁄or appropriate experts. Most

importantly, we find that when experts provide individual esti-

mates, rather than being forced into consensus, their models

present substantial differences in the effects of the transition

agents and large uncertainty in the outcomes of different resto-

ration strategies. Since differences between experts contribute

most to model variance in this example, it is important to

ascertain which parameters were most different between mod-

els so that additional data can be collected to determine the

true rate and effect of parameters.

WITHIN-EXPERT AND STOCHASTIC UNCERTAINTY

We expected within-expert uncertainty to be caused by experts

being uncertain about the true values of parameters. During

interviews, experts who were highly uncertain provided very

large bounds on estimates while those who were more confi-

dent provided smaller bounds. However, some of the variation

in within-expert uncertainty may also be due to the conflation

of within-expert uncertainty with variance in rates of transi-

tions. We intended the within-expert variance component to

describe only expert’s cognitive uncertainty about fixed param-

eter values, but we cannot rule out the possibility that experts

were also providing an estimate of the variability in parameter

rates.

Despite the potential for conflation of parameter stochastici-

ty and imperfect expert knowledge, the within-expert uncer-

tainty component was relatively unimportant compared with

between-expert uncertainty. However, experts can be poor

judges of their own uncertainty (Cooke 1991) and can be prone

to overconfidence, a common bias in subjective assessments

(Morgan & Henrion 1990b; Ayyub 2001; Soll & Klayman

2004). We treated experts’ upper and lower estimates as 80%,

90%or 95% confidence bounds. However, reasonable bounds

are often much narrower than absolute bounds (Stainforth

et al. 2005). For example, when asked for 98% or 90% confi-

dence intervals, people often provide 60%and 50%confidence

intervals respectively (Yaniv & Foster 1995; Teigen & Jørgen-

sen 2005). This occurs because there is a cognitive trade-off

between providing wide, less informative intervals and provid-

ing precise, informative estimates that may not include the true

estimate (Yaniv & Foster 1995). We did not explicitly ask

experts to provide estimates that reflected a specific confidence

interval. Instead, we asked for the ‘most reasonable’ upper and

lower limits. The small within-expert variance component may

have been due to this linguistic ambiguity (Burgman 2005).

However, the within-expert variance component was so small

relative to between-expert uncertainty that even if we had

assumed much wider beta distributions, the within-expert

uncertainty would still be trivial compared with the between-

expert variation. Perhaps, what is most interesting in this study

is that experts were so confident in their own estimates, even

though those estimates diverged so substantially from those of

their peers.

The magnitude of the system stochasticity variance compo-

nent varied between experts. Though this at first seems unintu-

itive it can be easily explained by a simple relationship with a

given model parameterization and model stochasticity. When

experts specify models with high transition rates, there can be a

greater difference between simulations after the same number

of timesteps than amodel with a low transition rates.

OTHER SOURCES OF UNCERTAINTY

There are additional sources of uncertainty that can contribute

to overall model uncertainty. Underspecificity is a type of lin-

guistic uncertainty that occurs when there is unwanted general-

ity (Regan, Colyvan & Burgman 2002), which might occur

because the vegetation states we defined were very broad. For

example, within the high-densitymature vegetation state, small

trees could have any diameter between 5–59 cm and any den-

sity greater than 100 stems ha)1. This broad classification was

necessary to minimize the number of vegetation states and the

confusion in estimating parameters for many vegetation states.

However, some experts found that these broad categories

made it difficult to estimate the rates and effects of distur-

bances. Asking experts for unspecified bounds (discussed

above) is also an example of underspecificity. Structural model

uncertainty is another potential source that occurs when a

model structure is employed while other equally plausible

Table 2. The mean variance estimates and 95% Bayesian credible

intervals (in square brackets) for the VCA parameters derived from

posterior probability density distributions

Parameter

Confidence

bound (%) Variance estimate

80 0Æ957 [0Æ263, 6Æ070]

Between-expert (r2expt) 90 0Æ955 [0Æ261, 6Æ013]
95 0Æ983 [0Æ269, 6Æ234]
80 0Æ023 [0Æ018, 0Æ030]

Within-expert (r2
proj) 90 0Æ013 [0Æ010, 0Æ018]

95 0Æ019 [0Æ014, 0Æ024]

System stochasticity ⁄
residual (r2sims)

80 0Æ140 [0Æ138, 0Æ142]
90 0Æ117 [0Æ115, 0Æ119]
95 0Æ132 [0Æ130, 0Æ134]
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models are not accounted for (Wintle et al. 2003). Here, we

ignored this type of uncertainty and only used a single model

structure with multiple parameterizations. Structural uncer-

tainty could have been incorporated by constructing different

model structures and asking experts to parameterize each one,

or by allowing each expert to construct their own model using

unique vegetation states, similar to the approach taken by

Smith, Parrott & Robertson (2008). However, parameterizing

multiple model structures would have been too onerous for

experts and using unique model structures for each expert

would have compromised our analysis of within-expert uncer-

tainty.

Conclusions

Here, we have successfully classified and quantified three

important sources of uncertainty in STSMs based on expert

opinion. Our variance components analyses revealed that esti-

mates of between-expert uncertainty were larger and more

uncertain than the other sources of uncertainty analysed. This

emphasizes the importance of maximizing the sample of

experts within available resources – noting that the numbers of

appropriate experts to estimate the efficacy of restoration

actions will often be small – and carefully selecting experts

from different backgrounds. Our results highlight the potential

for over-confidence if consensus methods are used for deci-

sion-making. Characterizing this important aspect of model

uncertainty is a first step towards developing methods to

reduce overall uncertainty. Reducing the impacts of inter-

expert uncertainty may be achieved by better characterization,

by exploring the reasons for divergence between experts, refine-

ment of expert estimation via calibration, and training and

weighting of experts with gold-standard data sets.
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