

International Sea buckthorn Association (ISA)

STUDY OF FIGHTING METHODS AGAINST WEED SPECIES IN SEABUCKTHORN FIELD

> Lecturer: Amarsaikhan.J Azzaya.T Otgonsuren.M

Researched state

Ariunaa. O. and Otgonsuren.M on the topic "Development of weed control methods in the field of blackberry" IPP (2001-2003)

Doctor Atarsaikhan.T and other researchers experiment "Effect of covering for cultivation friut and berries" (2020-2022)

Garber, R.H. (1973) US Department of Agriculture Publication 1. ARS-S-19. pp. 69-77

SCIENCE AND TECHNOLOGY PROJECT REPORT 2003-2005 5.7.4

Судалгааны ажлын зорилго, зорилт

To determine in detail the distribution and density of weeds species in the sea buckthorn field. Developing optimal methods of fighting.

ECONOMIC INSTRUCTE

Materials, method

Experiment scheme

Black synthetic film	Black synthetic film	Control	Black synthetic film									
Control	Wood shavings	Wood shavings	Wood shavings									
			1									
Biochar	Control	Biochar	Biochar									
A field fought for mechanical (mowed) method												
ECONOMIC												
Tornado, 50%, 2.5l/ha	Tornado, 50%, 2.5l/ha	Tornado, 50%, 2.5l/ha	Control									
Control	Tornado, 50%, 3l/ha	Tornado, 50%, 3l/ha	Tornado, 50%, 3l/ha									

Research results

Diagram 1. Ratio and percentage of biological groups of weeds in sea buckthorn field The level of annual 30% weeds in the researched perennial biannual 6% area is 4-5 64% points

Research results

16

14

12

10

8

2

the changes in soil temperature and moisture were analyzed 10, 30, 40, and 60 days after the application of the black synthetic film, and compared to the control variant, the temperature of the soil increased by 0.9-1.8 ^oC and moisture was retained

Soil temperature Control Biochar

14.7 14.9 14.0

13.1

Soil moisture
Black synthetic film
Wood shavings

6.6 5.2 7.0 5.6

Research results

In the spring field of sea buckthorn, in the third ten days of May, weed count was 42-109 weeds per 1 m², among which were *many* Chamaenerion there angustifolium (L.) Scop, Agropyron repens, Cirsium arrvense, Sonchus Arvensis L. Chenopodium album etc.. weeds level at 4-5 points. The result of herbicide application was 97.6-100% in Tornado 2-3 l/ha version, with yellowing of weeds and stunted growth from the 14th day.

Research result

№	Variants	Weed decrease, %	Average yield t/ha	Additional yield t/ha	Additional yield, %		in the second se	
						-		
1	Control	- 14	6.4					
2	Black	100	7.6	1.2	18.7		Experimental	0.046
	synthetic						error	
	film						Error of	0.039
3	Wood	100	8.1	1.7	26.5		mean	
	shavings		_				difference	100
4	Biochar	100	8.4	2	31.2		P value	< 0.05
5	Tornado 50%	97.6-100	8.2	1.8	28.1			
6	Mechanical mower	100	7.1	S 0.7	10.9		/	

1062

Conclusion and recommendation

It was considered that perennial weeds were the most widespread in the sea buckthorn fields of "Polyvit" LLC in Batsumber Sum, Tuv Province, which created the conditions for increasing the spread of harmful organisms.

In addition to 100% result showed in variants of black synthetic film, wood shavings and biochar covers for weed control, the crop was increased by 10.9-31.2% due to the retention of soil moisture.

The biological results of 97.6-100% were shown in the fight with Tornado herbicide (glyphosate) against perennial, root and rhizomatous weeds spread in the sea buckthorn fields.

It is necessary to study in detail the relationship between weeds and other harmful organisms in sea buckthorn fields

During the growth period, depending on the height of the weeds, weeding was done mechanically 3 times, which limited the spread of rodents.

Comparing the weed control options, it was found that the biological method option with black synthetic film mulching was more effective and had the advantage of facilitating human labor than other mechanical and chemical methods tested.

Thank you for your attention

ECONOMIC INSTITUTE